🍩 Database of Original & Non-Theoretical Uses of Topology

(found 242 matches in 0.02516s)
  1. Machine Learning and Topological Data Analysis Identify Unique Features of Human Papillae in 3D Scans (2023)

    Rayna Andreeva, Anwesha Sarkar, Rik Sarkar
    Abstract The tongue surface houses a range of papillae that are integral to the mechanics and chemistry of taste and textural sensation. Although gustatory function of papillae is well investigated, the uniqueness of papillae within and across individuals remains elusive. Here, we present the first machine learning framework on 3D microscopic scans of human papillae (n = 2092), uncovering the uniqueness of geometric and topological features of papillae. The finer differences in shapes of papillae are investigated computationally based on a number of features derived from discrete differential geometry and computational topology. Interpretable machine learning techniques show that persistent homology features of the papillae shape are the most effective in predicting the biological variables. Models trained on these features with small volumes of data samples predict the type of papillae with an accuracy of 85%. The papillae type classification models can map the spatial arrangement of filiform and fungiform papillae on a surface. Remarkably, the papillae are found to be distinctive across individuals and an individual can be identified with an accuracy of 48% among the 15 participants from a single papillae. Collectively, this is the first unprecedented evidence demonstrating that tongue papillae can serve as a unique identifier inspiring new research direction for food preferences and oral diagnostics.
  2. Topological Data Analysis of Spatial Patterning in Heterogeneous Cell Populations: Clustering and Sorting With Varying Cell-Cell Adhesion (2023)

    Dhananjay Bhaskar, William Y. Zhang, Alexandria Volkening, Björn Sandstede, Ian Y. Wong
    Abstract Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains challenging, particularly given their structural diversity and biological variability. Recent developments based on topological data analysis are intriguing to reveal similarities in tissue architecture, but these methods remain computationally expensive. In this article, we show that multicellular patterns organized from two interacting cell types can be efficiently represented through persistence images. Our optimized combination of dimensionality reduction via autoencoders, combined with hierarchical clustering, achieved high classification accuracy for simulations with constant cell numbers. We further demonstrate that persistence images can be normalized to improve classification for simulations with varying cell numbers due to proliferation. Finally, we systematically consider the importance of incorporating different topological features as well as information about each cell type to improve classification accuracy. We envision that topological machine learning based on persistence images will enable versatile and robust classification of complex tissue architectures that occur in development and disease.
  3. Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)

    Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. Yoon
    Abstract Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable.
  4. Statistical Inference for Persistent Homology Applied to Simulated fMRI Time Series Data (2023)

    Hassan Abdallah, Adam Regalski, Mohammad Behzad Kang, Maria Berishaj, Nkechi Nnadi, Asadur Chowdury, Vaibhav A. Diwadkar, Andrew Salch
    Abstract Time-series data are amongst the most widely-used in biomedical sciences, including domains such as functional Magnetic Resonance Imaging (fMRI). Structure within time series data can be captured by the tools of topological data analysis (TDA). Persistent homology is the mostly commonly used data-analytic tool in TDA, and can effectively summarize complex high-dimensional data into an interpretable 2-dimensional representation called a persistence diagram. Existing methods for statistical inference for persistent homology of data depend on an independence assumption being satisfied. While persistent homology can be computed for each time index in a time-series, time-series data often fail to satisfy the independence assumption. This paper develops a statistical test that obviates the independence assumption by implementing a multi-level block sampled Monte Carlo test with sets of persistence diagrams. Its efficacy for detecting task-dependent topological organization is then demonstrated on simulated fMRI data. This new statistical test is therefore suitable for analyzing persistent homology of fMRI data, and of non-independent data in general.
  5. A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science (2023)

    Lander Ver Hoef, Henry Adams, Emily J. King, Imme Ebert-Uphoff
    Abstract Abstract Topological data analysis (TDA) is a tool from data science and mathematics that is beginning to make waves in environmental science. In this work, we seek to provide an intuitive and understandable introduction to a tool from TDA that is particularly useful for the analysis of imagery, namely, persistent homology. We briefly discuss the theoretical background but focus primarily on understanding the output of this tool and discussing what information it can glean. To this end, we frame our discussion around a guiding example of classifying satellite images from the sugar, fish, flower, and gravel dataset produced for the study of mesoscale organization of clouds by Rasp et al. We demonstrate how persistent homology and its vectorization, persistence landscapes, can be used in a workflow with a simple machine learning algorithm to obtain good results, and we explore in detail how we can explain this behavior in terms of image-level features. One of the core strengths of persistent homology is how interpretable it can be, so throughout this paper we discuss not just the patterns we find but why those results are to be expected given what we know about the theory of persistent homology. Our goal is that readers of this paper will leave with a better understanding of TDA and persistent homology, will be able to identify problems and datasets of their own for which persistent homology could be helpful, and will gain an understanding of the results they obtain from applying the included GitHub example code. Significance Statement Information such as the geometric structure and texture of image data can greatly support the inference of the physical state of an observed Earth system, for example, in remote sensing to determine whether wildfires are active or to identify local climate zones. Persistent homology is a branch of topological data analysis that allows one to extract such information in an interpretable way—unlike black-box methods like deep neural networks. The purpose of this paper is to explain in an intuitive manner what persistent homology is and how researchers in environmental science can use it to create interpretable models. We demonstrate the approach to identify certain cloud patterns from satellite imagery and find that the resulting model is indeed interpretable.
  6. Topological Singularity Detection at Multiple Scales (2023)

    Julius Von Rohrscheidt, Bastian Rieck
    Abstract The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the ’manifoldness’ of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
  7. Feature Detection and Hypothesis Testing for Extremely Noisy Nanoparticle Images Using Topological Data Analysis (2023)

    Andrew M. Thomas, Peter A. Crozier, Yuchen Xu, David S. Matteson
    Abstract We propose a flexible algorithm for feature detection and hypothesis testing in images with ultra-low signal-to-noise ratio using cubical persistent homology. Our main application is in the identification of atomic columns and other features in Transmission Electron Microscopy (TEM). Cubical persistent homology is used to identify local minima and their size in subregions in the frames of nanoparticle videos, which are hypothesized to correspond to relevant atomic features. We compare the performance of our algorithm to other employed methods for the detection of columns and their intensity. Additionally, Monte Carlo goodness-of-fit testing using real-valued summaries of persistence diagrams derived from smoothed images (generated from pixels residing in the vacuum region of an image) is developed and employed to identify whether or not the proposed atomic features generated by our algorithm are due to noise. Using these summaries derived from the generated persistence diagrams, one can produce univariate time series for the nanoparticle videos, thus, providing a means for assessing fluxional behavior. A guarantee on the false discovery rate for multiple Monte Carlo testing of identical hypotheses is also established.

    Community Resources

  8. Pattern Characterization Using Topological Data Analysis: Application to Piezo Vibration Striking Treatment (2023)

    Max M. Chumley, Melih C. Yesilli, Jisheng Chen, Firas A. Khasawneh, Yang Guo
    Abstract Quantifying patterns in visual or tactile textures provides important information about the process or phenomena that generated these patterns. In manufacturing, these patterns can be intentionally introduced as a design feature, or they can be a byproduct of a specific process. Since surface texture has significant impact on the mechanical properties and the longevity of the workpiece, it is important to develop tools for quantifying surface patterns and, when applicable, comparing them to their nominal counterparts. While existing tools may be able to indicate the existence of a pattern, they typically do not provide more information about the pattern structure, or how much it deviates from a nominal pattern. Further, prior works do not provide automatic or algorithmic approaches for quantifying other pattern characteristics such as depths’ consistency, and variations in the pattern motifs at different level sets. This paper leverages persistent homology from Topological Data Analysis (TDA) to derive noise-robust scores for quantifying motifs’ depth and roundness in a pattern. Specifically, sublevel persistence is used to derive scores that quantify the consistency of indentation depths at any level set in Piezo Vibration Striking Treatment (PVST) surfaces. Moreover, we combine sublevel persistence with the distance transform to quantify the consistency of the indentation radii, and to compare them with the nominal ones. Although the tool in our PVST experiments had a semi-spherical profile, we present a generalization of our approach to tools/motifs of arbitrary shapes thus making our method applicable to other pattern-generating manufacturing processes.
  9. Some Applications of TDA on Financial Markets (2022)

    Miguel Angel Ruiz-Ortiz, José Carlos Gómez-Larrañaga, Jesús Rodríguez-Viorato
    Abstract The Topological Data Analysis (TDA) has had many applications. However, financial markets has been studied slightly through TDA. Here we present a quick review of some recent applications of TDA on financial markets and propose a new turbulence index based on persistent homology -- the fundamental tool for TDA -- that seems to capture critical transitions on financial data, based on our experiment with SP500 data before 2020 stock market crash in February 20, 2020, due to the COVID-19 pandemic. We review applications in the early detection of turbulence periods in financial markets and how TDA can help to get new insights while investing and obtain superior risk-adjusted returns compared with investing strategies using classical turbulence indices as VIX and the Chow's index based on the Mahalanobis distance. Furthermore, we include an introduction to persistent homology so the reader could be able to understand this paper without knowing TDA.
  10. Time-Inhomogeneous Diffusion Geometry and Topology (2022)

    Guillaume Huguet, Alexander Tong, Bastian Rieck, Jessie Huang, Manik Kuchroo, Matthew Hirn, Guy Wolf, Smita Krishnaswamy
    Abstract Diffusion condensation is a dynamic process that yields a sequence of multiscale data representations that aim to encode meaningful abstractions. It has proven effective for manifold learning, denoising, clustering, and visualization of high-dimensional data. Diffusion condensation is constructed as a time-inhomogeneous process where each step first computes and then applies a diffusion operator to the data. We theoretically analyze the convergence and evolution of this process from geometric, spectral, and topological perspectives. From a geometric perspective, we obtain convergence bounds based on the smallest transition probability and the radius of the data, whereas from a spectral perspective, our bounds are based on the eigenspectrum of the diffusion kernel. Our spectral results are of particular interest since most of the literature on data diffusion is focused on homogeneous processes. From a topological perspective, we show diffusion condensation generalizes centroid-based hierarchical clustering. We use this perspective to obtain a bound based on the number of data points, independent of their location. To understand the evolution of the data geometry beyond convergence, we use topological data analysis. We show that the condensation process itself defines an intrinsic diffusion homology. We use this intrinsic topology as well as an ambient topology to study how the data changes over diffusion time. We demonstrate both homologies in well-understood toy examples. Our work gives theoretical insights into the convergence of diffusion condensation, and shows that it provides a link between topological and geometric data analysis.
  11. Toroidal Topology of Population Activity in Grid Cells (2022)

    Richard J. Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A. Baas, Benjamin A. Dunn, May-Britt Moser, Edvard I. Moser
    Abstract The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal’s allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8–11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.
  12. Persistent Homology for Breast Tumor Classification Using Mammogram Scans (2022)

    Aras Asaad, Dashti Ali, Taban Majeed, Rasber Rashid
    Abstract An Important tool in the field topological data analysis is known as persistent Homology (PH) which is used to encode abstract representation of the homology of data at different resolutions in the form of persistence diagram (PD). In this work we build more than one PD representation of a single image based on a landmark selection method, known as local binary patterns, that encode different types of local textures from images. We employed different PD vectorizations using persistence landscapes, persistence images, persistence binning (Betti Curve) and statistics. We tested the effectiveness of proposed landmark based PH on two publicly available breast abnormality detection datasets using mammogram scans. Sensitivity of landmark based PH obtained is over 90% in both datasets for the detection of abnormal breast scans. Finally, experimental results give new insights on using different types of PD vectorizations which help in utilising PH in conjunction with machine learning classifiers.
  13. Extremal Event Graphs: A (Stable) Tool for Analyzing Noisy Time Series Data (2022)

    Robin Belton, Bree Cummins, Brittany Terese Fasy, Tomáš Gedeon
    Abstract Local maxima and minima, or extremal events, in experimental time series can be used as a coarse summary to characterize data. However, the discrete sampling in recording experimental measurements suggests uncertainty on the true timing of extrema during the experiment. This in turn gives uncertainty in the timing order of extrema within the time series. Motivated by applications in genomic time series and biological network analysis, we construct a weighted directed acyclic graph (DAG) called an extremal event DAG using techniques from persistent homology that is robust to measurement noise. Furthermore, we define a distance between extremal event DAGs based on the edit distance between strings. We prove several properties including local stability for the extremal event DAG distance with respect to pairwise \$L_\\infty\\$ distances between functions in the time series data. Lastly, we provide algorithms, publicly free software, and implementations on extremal event DAG construction and comparison.
  14. Topological Phase Estimation Method for Reparameterized Periodic Functions (2022)

    Thomas Bonis, Frédéric Chazal, Bertrand Michel, Wojciech Reise
    Abstract We consider a signal composed of several periods of a periodic function, of which we observe a noisy reparametrisation. The phase estimation problem consists of finding that reparametrisation, and, in particular, the number of observed periods. Existing methods are well-suited to the setting where the periodic function is known, or at least, simple. We consider the case when it is unknown and we propose an estimation method based on the shape of the signal. We use the persistent homology of sublevel sets of the signal to capture the temporal structure of its local extrema. We infer the number of periods in the signal by counting points in the persistence diagram and their multiplicities. Using the estimated number of periods, we construct an estimator of the reparametrisation. It is based on counting the number of sufficiently prominent local minima in the signal. This work is motivated by a vehicle positioning problem, on which we evaluated the proposed method.
  15. Unsupervised Topological Learning Approach of Crystal Nucleation (2022)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unravelled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometre length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to monatomic metals, it shows that both translational and orientational ordering always come into play simultaneously as a result of the strong bonding when homogeneous nucleation starts in regions with low five-fold symmetry. It also reveals the specificity of the nucleation pathways depending on the element considered, with features beyond the hypothesis of Classical Nucleation Theory.
  16. Unsupervised Topological Learning for Identification of Atomic Structures (2022)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA) concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic positions and without a priori knowledge, our method allows for an autonomous identification of clusters of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in materials at the atomic scale.
  17. Quantitative Analysis of Phase Transitions in Two-Dimensional XY Models Using Persistent Homology (2022)

    Nicholas Sale, Jeffrey Giansiracusa, Biagio Lucini
    Abstract We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model in order to identify and study their phase transitions. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin model configurations and, by considering the fluctuations in the output of logistic regression and k-nearest neighbours models trained on persistence images, we develop a methodology to extract estimates of the critical temperature and the critical exponent of the correlation length. We put particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error. For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length.
  18. Imaging-Based Representation and Stratification of Intra-Tumor Heterogeneity via Tree-Edit Distance (2022)

    Lara Cavinato, Matteo Pegoraro, Alessandra Ragni, Francesca Ieva
    Abstract Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel patient representation to perform cancer subtyping according to hierarchical clustering technique. To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity status, tumor burden and biological characteristics. Results are promising, as the proposed method outperforms current literature approaches. Ultimately, the proposed method draws a general analysis framework that would allow to extract knowledge from daily acquired imaging data of patients and provide insights for effective treatment planning.
  19. Topological Early Warning Signals: Quantifying Varying Routes to Extinction in a Spatially Distributed Population Model (2022)

    Laura S. Storch, Sarah L. Day
    Abstract Understanding and predicting critical transitions in spatially explicit ecological systems is particularly challenging due to their complex spatial and temporal dynamics and high dimensionality. Here, we explore changes in population distribution patterns during a critical transition (an extinction event) using computational topology. Computational topology allows us to quantify certain features of a population distribution pattern, such as the level of fragmentation. We create population distribution patterns via a simple coupled patch model with Ricker map growth and nearest neighbors dispersal on a two dimensional lattice. We observe two dominant paths to extinction within the explored parameter space that depend critically on the dispersal rate d and the rate of parameter drift, Δϵ. These paths to extinction are easily topologically distinguishable, so categorization can be automated. We use this population model as a theoretical proof-of-concept for the methodology, and argue that computational topology is a powerful tool for analyzing dynamical changes in systems with noisy data that are coarsely resolved in space and/or time. In addition, computational topology can provide early warning signals for chaotic dynamical systems where traditional statistical early warning signals would fail. For these reasons, we envision this work as a helpful addition to the critical transitions prediction toolbox.
  20. Exploring Surface Texture Quantification in Piezo Vibration Striking Treatment (PVST) Using Topological Measures (2022)

    Melih C. Yesilli, Max M. Chumley, Jisheng Chen, Firas A. Khasawneh, Yang Guo
    Abstract Abstract. Surface texture influences wear and tribological properties of manufactured parts, and it plays a critical role in end-user products. Therefore, quantifying the order or structure of a manufactured surface provides important information on the quality and life expectancy of the product. Although texture can be intentionally introduced to enhance aesthetics or to satisfy a design function, sometimes it is an inevitable byproduct of surface treatment processes such as Piezo Vibration Striking Treatment (PVST). Measures of order for surfaces have been characterized using statistical, spectral, and geometric approaches. For nearly hexagonal lattices, topological tools have also been used to measure the surface order. This paper explores utilizing tools from Topological Data Analysis for measuring surface texture. We compute measures of order based on optical digital microscope images of surfaces treated using PVST. These measures are applied to the grid obtained from estimating the centers of tool impacts, and they quantify the grid’s deviations from the nominal one. Our results show that TDA provides a convenient framework for characterization of pattern type that bypasses some limitations of existing tools such as difficult manual processing of the data and the need for an expert user to analyze and interpret the surface images.
  21. A Simplified Algorithm for Identifying Abnormal Changes in Dynamic Networks (2022)

    Bouchaib Azamir, Driss Bennis, Bertrand Michel
    Abstract Topological data analysis has recently been applied to the study of dynamic networks. In this context, an algorithm was introduced and helps, among other things, to detect early warning signals of abnormal changes in the dynamic network under study. However, the complexity of this algorithm increases significantly once the database studied grows. In this paper, we propose a simplification of the algorithm without affecting its performance. We give various applications and simulations of the new algorithm on some weighted networks. The obtained results show clearly the efficiency of the introduced approach. Moreover, in some cases, the proposed algorithm makes it possible to highlight local information and sometimes early warning signals of local abnormal changes.
  22. Topological Biomarkers for Real-Time Detection of Epileptic Seizures (2022)

    Ximena Fernández, Diego Mateos
    Abstract Automated seizure detection is a fundamental problem in computational neuroscience towards diagnosis and treatment's improvement of epileptic disease. We propose a real-time computational method for automated tracking and detection of epileptic seizures from raw neurophysiological recordings. Our mechanism is based on the topological analysis of the sliding-window embedding of the time series derived from simultaneously recorded channels. We extract topological biomarkers from the signals via the computation of the persistent homology of time-evolving topological spaces. Remarkably, the proposed biomarkers robustly captures the change in the brain dynamics during the ictal state. We apply our methods in different types of signals including scalp and intracranial EEG and MEG, in patients during interictal and ictal states, showing high accuracy in a range of clinical situations.
  23. Severe Slugging Flow Identification From Topological Indicators (2022)

    Simone Casolo
    Abstract In this work, topological data analysis is used to identify the onset of severe slug flow in offshore petroleum production systems. Severe slugging is a multiphase flow regime known to be very inefficient and potentially harmful to process equipment and it is characterized by large oscillations in the production fluid pressure. Time series from pressure sensors in subsea oil wells are processed by means of Takens embedding to produce point clouds of data. Embedded sensor data is then analyzed using persistent homology to obtain topological indicators capable of revealing the occurrence of severe slugging in a condition-based monitoring approach. A large dataset of well events consisting of both real and simulated data is used to demonstrate the possibilty of authomatizing severe slugging detection from live data via topological data analysis. Methods based on persistence diagrams are shown to accurately identify severe slugging and to classify different flow regimes from pressure signals of producing wells with supervised machine learning.
  24. Confinement in Non-Abelian Lattice Gauge Theory via Persistent Homology (2022)

    Daniel Spitz, Julian M. Urban, Jan M. Pawlowski
    Abstract We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture of confinement. In particular, topological densities form spatial lumps which show signatures of the classical probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions are encoded in holonomy Lie algebra fields, following the semi-classical temperature dependence of the instanton appearance probability. Debye screening discriminating between electric and magnetic fields is visible in persistent homology and pronounced at large gauge coupling. All employed constructions are gauge-invariant without a priori assumptions on the configurations under study. This work showcases the versatility of persistent homology for statistical and quantum physics studies, barely explored to date.
  25. A Topological Machine Learning Pipeline for Classification (2022)

    Francesco Conti, Davide Moroni, Maria Antonietta Pascali
    Abstract In this work, we develop a pipeline that associates Persistence Diagrams to digital data via the most appropriate filtration for the type of data considered. Using a grid search approach, this pipeline determines optimal representation methods and parameters. The development of such a topological pipeline for Machine Learning involves two crucial steps that strongly affect its performance: firstly, digital data must be represented as an algebraic object with a proper associated filtration in order to compute its topological summary, the Persistence Diagram. Secondly, the persistence diagram must be transformed with suitable representation methods in order to be introduced in a Machine Learning algorithm. We assess the performance of our pipeline, and in parallel, we compare the different representation methods on popular benchmark datasets. This work is a first step toward both an easy and ready-to-use pipeline for data classification using persistent homology and Machine Learning, and to understand the theoretical reasons why, given a dataset and a task to be performed, a pair (filtration, topological representation) is better than another.
  26. Capturing Shape Information With Multi-Scale Topological Loss Terms For 3D Reconstruction (2022)

    Dominik J. E. Waibel, Scott Atwell, Matthias Meier, Carsten Marr, Bastian Rieck
    Abstract Reconstructing 3D objects from 2D images is both challenging for our brains and machine learning algorithms. To support this spatial reasoning task, contextual information about the overall shape of an object is critical. However, such information is not captured by established loss terms (e.g. Dice loss). We propose to complement geometrical shape information by including multi-scale topological features, such as connected components, cycles, and voids, in the reconstruction loss. Our method uses cubical complexes to calculate topological features of 3D volume data and employs an optimal transport distance to guide the reconstruction process. This topology-aware loss is fully differentiable, computationally efficient, and can be added to any neural network. We demonstrate the utility of our loss by incorporating it into SHAPR, a model for predicting the 3D cell shape of individual cells based on 2D microscopy images. Using a hybrid loss that leverages both geometrical and topological information of single objects to assess their shape, we find that topological information substantially improves the quality of reconstructions, thus highlighting its ability to extract more relevant features from image datasets.
  27. Path Homologies of Motifs and Temporal Network Representations (2022)

    Samir Chowdhury, Steve Huntsman, Matvey Yutin
    Abstract Path homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology.
  28. A Novel Quality Clustering Methodology on Fab-Wide Wafer Map Images in Semiconductor Manufacturing (2022)

    Yuan-Ming Hsu, Xiaodong Jia, Wenzhe Li, Jay Lee
    Abstract Abstract. In semiconductor manufacturing, clustering the fab-wide wafer map images is of critical importance for practitioners to understand the subclusters of wafer defects, recognize novel clusters or anomalies, and develop fast reactions to quality issues. However, due to the high-mix manufacturing of diversified wafer products of different sizes and technologies, it is difficult to cluster the wafer map images across the fab. This paper addresses this challenge by proposing a novel methodology for fab-wide wafer map data clustering. In the proposed methodology, a well-known deep learning technique, vision transformer with multi-head attention is first trained to convert binary wafer images of different sizes into condensed feature vectors for efficient clustering. Then, the Topological Data Analysis (TDA), which is widely used in biomedical applications, is employed to visualize the data clusters and identify the anomalies. The TDA yields a topological representation of high-dimensional big data as well as its local clusters by creating a graph that shows nodes corresponding to the clusters within the data. The effectiveness of the proposed methodology is demonstrated by clustering the public wafer map dataset WM-811k from the real application which has a total of 811,457 wafer map images. We further demonstrate the potential applicability of topology data analytics in the semiconductor area by visualization.
  29. Topological Descriptors for Coral Reef Resilience Using a Stochastic Spatial Model (2022)

    Robert A. McDonald, Rosanna Neuhausler, Martin Robinson, Laurel G. Larsen, Heather A. Harrington, Maria Bruna
    Abstract A complex interplay between species governs the evolution of spatial patterns in ecology. An open problem in the biological sciences is characterizing spatio-temporal data and understanding how changes at the local scale affect global dynamics/behavior. We present a toolkit of multiscale methods and use them to analyze coral reef resilience and dynamics.Here, we extend a well-studied temporal mathematical model of coral reef dynamics to include stochastic and spatial interactions and then generate data to study different ecological scenarios. We present descriptors to characterize patterns in heterogeneous spatio-temporal data surpassing spatially averaged measures. We apply these descriptors to simulated coral data and demonstrate the utility of two topological data analysis techniques--persistent homology and zigzag persistence--for characterizing the spatiotemporal evolution of reefs and generating insight into mechanisms of reef resilience. We show that the introduction of local competition between species leads to the appearance of coral clusters in the reef. Furthermore, we use our analyses to distinguish the temporal dynamics that stem from different initial configurations of coral, showing that the neighborhood composition of coral sites determines their long-term survival. Finally, we use zigzag persistence to quantify spatial behavior in the metastable regime as the level of fish grazing on algae varies and determine which spatial configurations protect coral from extinction in different environments.
  30. Persistent Homology in Cosmic Shear: Constraining Parameters With Topological Data Analysis (2021)

    Sven Heydenreich, Benjamin Brück, Joachim Harnois-Déraps
    Abstract In recent years, cosmic shear has emerged as a powerful tool for studying the statistical distribution of matter in our Universe. Apart from the standard two-point correlation functions, several alternative methods such as peak count statistics offer competitive results. Here we show that persistent homology, a tool from topological data analysis, can extract more cosmological information than previous methods from the same data set. For this, we use persistent Betti numbers to efficiently summarise the full topological structure of weak lensing aperture mass maps. This method can be seen as an extension of the peak count statistics, in which we additionally capture information about the environment surrounding the maxima. We first demonstrate the performance in a mock analysis of the KiDS+VIKING-450 data: We extract the Betti functions from a suite of \textlessi\textgreaterN\textlessi/\textgreater-body simulations and use these to train a Gaussian process emulator that provides rapid model predictions; we next run a Markov chain Monte Carlo analysis on independent mock data to infer the cosmological parameters and their uncertainties. When comparing our results, we recover the input cosmology and achieve a constraining power on that is 3% tighter than that on peak count statistics. Performing the same analysis on 100 deg\textlesssup\textgreater2\textlesssup/\textgreater of \textlessi\textgreaterEuclid\textlessi/\textgreater-like simulations, we are able to improve the constraints on \textlessi\textgreaterS\textlessi/\textgreater\textlesssub\textgreater8\textlesssub/\textgreater and Ω\textlesssub\textgreaterm\textlesssub/\textgreater by 19% and 12%, respectively, while breaking some of the degeneracy between \textlessi\textgreaterS\textlessi/\textgreater\textlesssub\textgreater8\textlesssub/\textgreater and the dark energy equation of state. To our knowledge, the methods presented here are the most powerful topological tools for constraining cosmological parameters with lensing data.
  31. Topology-Aware Segmentation Using Discrete Morse Theory (2021)

    Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, Chao Chen
    Abstract In the segmentation of fine-scale structures from natural and biomedical images, per-pixel accuracy is not the only metric of concern. Topological correctness, such as vessel connectivity and membrane closure, is crucial for downstream analysis tasks. In this paper, we propose a new approach to train deep image segmentation networks for better topological accuracy. In particular, leveraging the power of discrete Morse theory (DMT), we identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy. Trained with a novel loss based on these global structures, the network performance is significantly improved especially near topologically challenging locations (such as weak spots of connections and membranes). On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
  32. Topological Data Analysis of Collective and Individual Epithelial Cells Using Persistent Homology of Loops (2021)

    Dhananjay Bhaskar, William Y. Zhang, Ian Y. Wong
    Abstract Interacting, self-propelled particles such as epithelial cells can dynamically self-organize into complex multicellular patterns, which are challenging to classify without a priori information. Classically, different phases and phase transitions have been described based on local ordering, which may not capture structural features at larger length scales. Instead, topological data analysis (TDA) determines the stability of spatial connectivity at varying length scales (i.e. persistent homology), and can compare different particle configurations based on the “cost” of reorganizing one configuration into another. Here, we demonstrate a topology-based machine learning approach for unsupervised profiling of individual and collective phases based on large-scale loops. We show that these topological loops (i.e. dimension 1 homology) are robust to variations in particle number and density, particularly in comparison to connected components (i.e. dimension 0 homology). We use TDA to map out phase diagrams for simulated particles with varying adhesion and propulsion, at constant population size as well as when proliferation is permitted. Next, we use this approach to profile our recent experiments on the clustering of epithelial cells in varying growth factor conditions, which are compared to our simulations. Finally, we characterize the robustness of this approach at varying length scales, with sparse sampling, and over time. Overall, we envision TDA will be broadly applicable as a model-agnostic approach to analyze active systems with varying population size, from cytoskeletal motors to motile cells to flocking or swarming animals.
  33. Measuring Hidden Phenotype: Quantifying the Shape of Barley Seeds Using the Euler Characteristic Transform (2021)

    Erik J. Amézquita, Michelle Y. Quigley, Tim Ophelders, Jacob B. Landis, Daniel Koenig, Elizabeth Munch, Daniel H. Chitwood
    Abstract Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare, and analyze this information embedded in a robust and concise way, we turn to Topological Data Analysis (TDA), specifically the Euler Characteristic Transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with X-ray Computed Tomography (CT) technology at 127 micron resolution. The Euler Characteristic Transform measures shape by analyzing topological features of an object at thresholds across a number of directional axes. A Kruskal-Wallis analysis of the information encoded by the topological signature reveals that the Euler Characteristic Transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine (SVM) to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of “hidden” shape nuances which are otherwise not detected.
  34. A Topological Perspective on Regimes in Dynamical Systems (2021)

    Kristian Strommen, Matthew Chantry, Joshua Dorrington, Nina Otter
    Abstract The existence and behaviour of so-called `regimes' has been extensively studied in dynamical systems ranging from simple toy models to the atmosphere itself, due to their potential of drastically simplifying complex and chaotic dynamics. Nevertheless, no agreed-upon and clear-cut definition of a `regime' or a `regime system' exists in the literature. We argue here for a definition which equates the existence of regimes in a system with the existence of non-trivial topological structure. We show, using persistent homology, a tool in topological data analysis, that this definition is both computationally tractable, practically informative, and accounts for a variety of different examples. We further show that alternative, more strict definitions based on clustering and/or temporal persistence criteria fail to account for one or more examples of dynamical systems typically thought of as having regimes. We finally discuss how our methodology can shed light on regime behaviour in the atmosphere, and discuss future prospects.
  35. Determining Structural Properties of Artificial Neural Networks Using Algebraic Topology (2021)

    David Pérez Fernández, Asier Gutiérrez-Fandiño, Jordi Armengol-Estapé, Marta Villegas
    Abstract Artificial Neural Networks (ANNs) are widely used for approximating complex functions. The process that is usually followed to define the most appropriate architecture for an ANN given a specific function is mostly empirical. Once this architecture has been defined, weights are usually optimized according to the error function. On the other hand, we observe that ANNs can be represented as graphs and their topological 'fingerprints' can be obtained using Persistent Homology (PH). In this paper, we describe a proposal focused on designing more principled architecture search procedures. To do this, different architectures for solving problems related to a heterogeneous set of datasets have been analyzed. The results of the evaluation corroborate that PH effectively characterizes the ANN invariants: when ANN density (layers and neurons) or sample feeding order is the only difference, PH topological invariants appear; in the opposite direction in different sub-problems (i.e. different labels), PH varies. This approach based on topological analysis helps towards the goal of designing more principled architecture search procedures and having a better understanding of ANNs.
  36. Coexistence Holes Characterize the Assembly and Disassembly of Multispecies Systems (2021)

    Marco Tulio Angulo, Aaron Kelley, Luis Montejano, Chuliang Song, Serguei Saavedra
    Abstract A central goal of ecological research has been to understand the limits on the maximum number of species that can coexist under given constraints. However, we know little about the assembly and disassembly processes under which a community can reach such a maximum number, or whether this number is in fact attainable in practice. This limitation is partly due to the challenge of performing experimental work and partly due to the lack of a formalism under which one can systematically study such processes. Here, we introduce a formalism based on algebraic topology and homology theory to study the space of species coexistence formed by a given pool of species. We show that this space is characterized by ubiquitous discontinuities that we call coexistence holes (that is, empty spaces surrounded by filled space). Using theoretical and experimental systems, we provide direct evidence showing that these coexistence holes do not occur arbitrarily—their diversity is constrained by the internal structure of species interactions and their frequency can be explained by the external factors acting on these systems. Our work suggests that the assembly and disassembly of ecological systems is a discontinuous process that tends to obey regularities.
  37. Using Persistent Homology as Preprocessing of Early Warning Signals for Critical Transition in Flood (2021)

    Syed Mohamad Sadiq Syed Musa, Mohd Salmi Md Noorani, Fatimah Abdul Razak, Munira Ismail, Mohd Almie Alias, Saiful Izzuan Hussain
    Abstract Flood early warning systems (FLEWSs) contribute remarkably to reducing economic and life losses during a flood. The theory of critical slowing down (CSD) has been successfully used as a generic indicator of early warning signals in various fields. A new tool called persistent homology (PH) was recently introduced for data analysis. PH employs a qualitative approach to assess a data set and provide new information on the topological features of the data set. In the present paper, we propose the use of PH as a preprocessing step to achieve a FLEWS through CSD. We test our proposal on water level data of the Kelantan River, which tends to flood nearly every year. The results suggest that the new information obtained by PH exhibits CSD and, therefore, can be used as a signal for a FLEWS. Further analysis of the signal, we manage to establish an early warning signal for ten of the twelve flood events recorded in the river; the two other events are detected on the first day of the flood. Finally, we compare our results with those of a FLEWS constructed directly from water level data and find that FLEWS via PH creates fewer false alarms than the conventional technique.
  38. Filtration Curves for Graph Representation (2021)

    Leslie O'Bray, Bastian Rieck, Karsten Borgwardt
    Abstract The two predominant approaches to graph comparison in recent years are based on (i) enumerating matching subgraphs or (ii) comparing neighborhoods of nodes. In this work, we complement these two perspectives with a third way of representing graphs: using filtration curves from topological data analysis that capture both edge weight information and global graph structure. Filtration curves are highly efficient to compute and lead to expressive representations of graphs, which we demonstrate on graph classification benchmark datasets. Our work opens the door to a new form of graph representation in data mining.
  39. Topological Graph Neural Networks (2021)

    Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, Karsten Borgwardt
    Abstract Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a novel layer that incorporates global topological information of a graph using persistent homology. TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of the Weisfeiler--Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial predictive performance, both on synthetic data sets, which can be trivially classified by humans but not by ordinary GNNs, and on real-world data.
  40. Classification of COVID-19 via Homology of CT-SCAN (2021)

    Sohail Iqbal, H. Fareed Ahmed, Talha Qaiser, Muhammad Imran Qureshi, Nasir Rajpoot
    Abstract In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" i̧tep\soares2020sars\, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of \$99.42\% \$, accuracy \$99.416\%\$, precision \$99.41\%\$, and recall \$99.42\%\$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.
  41. Topological Regularization for Dense Prediction (2021)

    Deqing Fu, Bradley J. Nelson
    Abstract Dense prediction tasks such as depth perception and semantic segmentation are important applications in computer vision that have a concrete topological description in terms of partitioning an image into connected components or estimating a function with a small number of local extrema corresponding to objects in the image. We develop a form of topological regularization based on persistent homology that can be used in dense prediction tasks with these topological descriptions. Experimental results show that the output topology can also appear in the internal activations of trained neural networks which allows for a novel use of topological regularization to the internal states of neural networks during training, reducing the computational cost of the regularization. We demonstrate that this topological regularization of internal activations leads to improved convergence and test benchmarks on several problems and architectures.
  42. Unsupervised Topological Learning Approach of Crystal Nucleation in Pure Tantalum (2021)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unraveled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometer length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low five-fold symmetry.
  43. Quantification of the Immune Content in Neuroblastoma: Deep Learning and Topological Data Analysis in Digital Pathology (2021)

    Nicole Bussola, Bruno Papa, Ombretta Melaiu, Aurora Castellano, Doriana Fruci, Giuseppe Jurman
    Abstract We introduce here a novel machine learning (ML) framework to address the issue of the quantitative assessment of the immune content in neuroblastoma (NB) specimens. First, the EUNet, a U-Net with an EfficientNet encoder, is trained to detect lymphocytes on tissue digital slides stained with the CD3 T-cell marker. The training set consists of 3782 images extracted from an original collection of 54 whole slide images (WSIs), manually annotated for a total of 73,751 lymphocytes. Resampling strategies, data augmentation, and transfer learning approaches are adopted to warrant reproducibility and to reduce the risk of overfitting and selection bias. Topological data analysis (TDA) is then used to define activation maps from different layers of the neural network at different stages of the training process, described by persistence diagrams (PD) and Betti curves. TDA is further integrated with the uniform manifold approximation and projection (UMAP) dimensionality reduction and the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm for clustering, by the deep features, the relevant subgroups and structures, across different levels of the neural network. Finally, the recent TwoNN approach is leveraged to study the variation of the intrinsic dimensionality of the U-Net model. As the main task, the proposed pipeline is employed to evaluate the density of lymphocytes over the whole tissue area of the WSIs. The model achieves good results with mean absolute error 3.1 on test set, showing significant agreement between densities estimated by our EUNet model and by trained pathologists, thus indicating the potentialities of a promising new strategy in the quantification of the immune content in NB specimens. Moreover, the UMAP algorithm unveiled interesting patterns compatible with pathological characteristics, also highlighting novel insights into the dynamics of the intrinsic dataset dimensionality at different stages of the training process. All the experiments were run on the Microsoft Azure cloud platform.
  44. Topological Attention for Time Series Forecasting (2021)

    Sebastian Zeng, Florian Graf, Christoph Hofer, Roland Kwitt
    Abstract The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism.
  45. Reviews: Topological Distances and Losses for Brain Networks (2021)

    Moo K. Chung, Alexander Smith, Gary Shiu
    Abstract Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological differences in brain networks. Further, Euclidean distances are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to use distances and loss functions that recognize topology of data. In this review paper, we survey various topological distance and loss functions from topological data analysis (TDA) and persistent homology that can be used in brain network analysis more effectively. Although there are many recent brain imaging studies that are based on TDA methods, possibly due to the lack of method awareness, TDA has not taken as the mainstream tool in brain imaging field yet. The main purpose of this paper is provide the relevant technical survey of these powerful tools that are immediately applicable to brain network data.
  46. TDAExplore: Quantitative Analysis of Fluorescence Microscopy Images Through Topology-Based Machine Learning (2021)

    Parker Edwards, Kristen Skruber, Nikola Milićević, James B. Heidings, Tracy-Ann Read, Peter Bubenik, Eric A. Vitriol
    Abstract Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20–30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.
  47. TDA-Net: Fusion of Persistent Homology and Deep Learning Features for COVID-19 Detection From Chest X-Ray Images (2021)

    Mustafa Hajij, Ghada Zamzmi, Fawwaz Batayneh
    Abstract Topological Data Analysis (TDA) has emerged recently as a robust tool to extract and compare the structure of datasets. TDA identifies features in data (e.g., connected components and holes) and assigns a quantitative measure to these features. Several studies reported that topological features extracted by TDA tools provide unique information about the data, discover new insights, and determine which feature is more related to the outcome. On the other hand, the overwhelming success of deep neural networks in learning patterns and relationships has been proven on various data applications including images. To capture the characteristics of both worlds, we propose TDA-Net, a novel ensemble network that fuses topological and deep features for the purpose of enhancing model generalizability and accuracy. We apply the proposed TDA-Net to a critical application, which is the automated detection of COVID-19 from CXR images. Experimental results showed that the proposed network achieved excellent performance and suggested the applicability of our method in practice.
  48. Inferring COVID-19 Biological Pathways From Clinical Phenotypes via Topological Analysis (2021)

    Negin Karisani, Daniel E. Platt, Saugata Basu, Laxmi Parida
    Abstract COVID-19 has caused thousands of deaths around the world and also resulted in a large international economic disruption. Identifying the pathways associated with this illness can help medical researchers to better understand the properties of the condition. This process can be carried out by analyzing the medical records. It is crucial to develop tools and models that can aid researchers with this process in a timely manner. However, medical records are often unstructured clinical notes, and this poses significant challenges to developing the automated systems. In this article, we propose a pipeline to aid practitioners in analyzing clinical notes and revealing the pathways associated with this disease. Our pipeline relies on topological properties and consists of three steps: 1) pre-processing the clinical notes to extract the salient concepts, 2) constructing a feature space of the patients to characterize the extracted concepts, and finally, 3) leveraging the topological properties to distill the available knowledge and visualize the result. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways.
  49. Persistent Homology of Geospatial Data: A Case Study With Voting (2021)

    Michelle Feng, Mason A. Porter
    Abstract A crucial step in the analysis of persistent homology is the transformation of data into an appropriate topological object (which, in our case, is a simplicial complex). Software packages for computing persistent homology typically construct Vietoris--Rips or other distance-based simplicial complexes on point clouds because they are relatively easy to compute. We investigate alternative methods of constructing simplicial complexes and the effects of making associated choices during simplicial-complex construction on the output of persistent-homology algorithms. We present two new methods for constructing simplicial complexes from two-dimensional geospatial data (such as maps). We apply these methods to a California precinct-level voting data set, and we thereby demonstrate that our new constructions can capture geometric characteristics that are missed by distance-based constructions. Our new constructions can thus yield more interpretable persistence modules and barcodes for geospatial data. In particular, they are able to distinguish short-persistence features that occur only for a narrow range of distance scales (e.g., voting patterns in densely populated cities) from short-persistence noise by incorporating information about other spatial relationships between regions.
  50. Data-Driven and Automatic Surface Texture Analysis Using Persistent Homology (2021)

    Melih C. Yesilli, Firas A. Khasawneh
    Abstract Surface roughness plays an important role in analyzing engineering surfaces. It quantifies the surface topography and can be used to determine whether the resulting surface finish is acceptable or not. Nevertheless, while several existing tools and standards are available for computing surface roughness, these methods rely heavily on user input thus slowing down the analysis and increasing manufacturing costs. Therefore, fast and automatic determination of the roughness level is essential to avoid costs resulting from surfaces with unacceptable finish, and user-intensive analysis. In this study, we propose a Topological Data Analysis (TDA) based approach to classify the roughness level of synthetic surfaces using both their areal images and profiles. We utilize persistent homology from TDA to generate persistence diagrams that encapsulate information on the shape of the surface. We then obtain feature matrices for each surface or profile using Carlsson coordinates, persistence images, and template functions. We compare our results to two widely used methods in the literature: Fast Fourier Transform (FFT) and Gaussian filtering. The results show that our approach yields mean accuracies as high as 97%. We also show that, in contrast to existing surface analysis tools, our TDA-based approach is fully automatable and provides adaptive feature extraction.
  51. The (Homological) Persistence of Gerrymandering (2021)

    Moon Duchin, Tom Needham, Thomas Weighill
    Abstract \textlessp style='text-indent:20px;'\textgreaterWe apply persistent homology, the dominant tool from the field of topological data analysis, to study electoral redistricting. We begin by combining geographic and electoral data from a districting plan to produce a persistence diagram. Then, to see beyond a particular plan and understand the possibilities afforded by the choices made in redistricting, we build methods to visualize and analyze large ensembles of alternative plans. Our detailed case studies use zero-dimensional homology (persistent components) of filtered graphs constructed from voting data to analyze redistricting in Pennsylvania and North Carolina. We find that, across large ensembles of partitions, the features cluster in the persistence diagrams in a way that corresponds strongly to geographic location, so that we can construct an average diagram for an ensemble, with each point identified with a geographical region. Using this localization lets us produce zonings of each state at Congressional, state Senate, and state House scales, show the regional non-uniformity of election shifts, and identify attributes of partitions that tend to correspond to partisan advantage.\textless/p\textgreater\textlessp style='text-indent:20px;'\textgreaterThe methods here are set up to be broadly applicable to the use of TDA on large ensembles of data. Many studies will benefit from interpretable summaries of large sets of samples or simulations, and the work here on localization and zoning will readily generalize to other partition problems, which are abundant in scientific applications. For the mathematically and politically rich problem of redistricting in particular, TDA provides a powerful and elegant summarization tool whose findings will be useful for practitioners.\textless/p\textgreater
  52. Loops Abound in the Cosmic Microwave Background: A \$4\sigma\$ Anomaly on Super-Horizon Scales (2021)

    Pratyush Pranav
    Abstract We present a topological analysis of the temperature fluctuation maps from the \emph\Planck 2020\ Data release 4 (DR4) based on the \texttt\NPIPE\ data processing pipeline. For comparison, we also present the topological characteristics of the maps from \emph\Planck 2018\ Data release 3 (DR3). We perform our analysis in terms of the homology characteristics of the maps, invoking relative homology to account for analysis in the presence of masks. We perform our analysis for a range of smoothing scales spanning sub- and super-horizon scales corresponding to \$FWHM = 5', 10', 20', 40', 80', 160', 320', 640'\$. Our main result indicates a significantly anomalous behavior of the loops in the observed maps compared to simulations that are modeled as isotopic and homogeneous Gaussian random fields. Specifically, we observe a \$4\sigma\$ deviation between the observation and simulations in the number of loops at \$FWHM = 320'\$ and \$FWHM = 640'\$, corresponding to super-horizon scales of \$5\$ degrees and larger. In addition, we also notice a mildly significant deviation at \$2\sigma\$ for all the topological descriptors for almost all the scales analyzed. Our results show a consistency across different data releases, and therefore, the anomalous behavior deserves a careful consideration regarding its origin and ramifications. Disregarding the unlikely source of the anomaly being instrumental systematics, the origin of the anomaly may be genuinely astrophysical -- perhaps due to a yet unresolved foreground, or truly primordial in nature. Given the nature of the topological descriptors, that potentially encodes information of all orders, non-Gaussianities, of either primordial or late-type nature, may be potential candidates. Alternate possibilities include the Universe admitting a non-trivial global topology, including effects induced by large-scale topological defects.
  53. Topology Identifies Emerging Adaptive Mutations in SARS-CoV-2 (2021)

    Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas Ott
    Abstract The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive advantages (e.g. higher infectivity or immune evasion) by leveraging the large number of genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. However, the large number of currently available genomes precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations based on persistent homology. It identifies convergent events merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates collected since the beginning of the pandemic. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape, and for many adaptive mutations the topological signal precedes an increase in prevalence. We show that our method effectively identifies emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.
  54. Homological Scaffold via Minimal Homology Bases (2021)

    Marco Guerra, Alessandro De Gregorio, Ulderico Fugacci, Giovanni Petri, Francesco Vaccarino
    Abstract The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks.
  55. HiDeF: Identifying Persistent Structures in Multiscale ‘Omics Data (2021)

    Fan Zheng, She Zhang, Christopher Churas, Dexter Pratt, Ivet Bahar, Trey Ideker
    Abstract In any ‘omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities revealed from protein networks can vary widely in sizes depending on the method. Here, we use the concept of persistent homology, drawn from mathematical topology, to identify robust structures in data at all scales simultaneously. Application to mouse single-cell transcriptomes significantly expands the catalog of identified cell types, while analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method, HiDeF, is available via Python and Cytoscape.
  56. Topological Data Analysis of C. Elegans Locomotion and Behavior (2021)

    Ashleigh Thomas, Kathleen Bates, Alex Elchesen, Iryna Hartsock, Hang Lu, Peter Bubenik
    Abstract Video of nematodes/roundworms was analyzed using persistent homology to study locomotion and behavior. In each frame, an organism's body posture was represented by a high-dimensional vector. By concatenating points in fixed-duration segments of this time series, we created a sliding window embedding (sometimes called a time delay embedding) where each point corresponds to a sequence of postures of an organism. Persistent homology on the points in this time series detected behaviors and comparisons of these persistent homology computations detected variation in their corresponding behaviors. We used average persistence landscapes and machine learning techniques to study changes in locomotion and behavior in varying environments.
  57. Persistent Homology Based Graph Convolution Network for Fine-Grained 3D Shape Segmentation (2021)

    Chi-Chong Wong, Chi-Man Vong
    Abstract Fine-grained 3D segmentation is an important task in 3D object understanding, especially in applications such as intelligent manufacturing or parts analysis for 3D objects. However, many challenges involved in such problem are yet to be solved, such as i) interpreting the complex structures located in different regions for 3D objects; ii) capturing fine-grained structures with sufficient topology correctness. Current deep learning and graph machine learning methods fail to tackle such challenges and thus provide inferior performance in fine-grained 3D analysis. In this work, methods in topological data analysis are incorporated with geometric deep learning model for the task of fine-grained segmentation for 3D objects. We propose a novel neural network model called Persistent Homology based Graph Convolution Network (PHGCN), which i) integrates persistent homology into graph convolution network to capture multi-scale structural information that can accurately represent complex structures for 3D objects; ii) applies a novel Persistence Diagram Loss (ℒPD) that provides sufficient topology correctness for segmentation over the fine-grained structures. Extensive experiments on fine-grained 3D segmentation validate the effectiveness of the proposed PHGCN model and show significant improvements over current state-of-the-art methods.
  58. Stable Topological Summaries for Analyzing the Organization of Cells in a Packed Tissue (2021)

    Nieves Atienza, Maria-Jose Jimenez, Manuel Soriano-Trigueros
    Abstract We use topological data analysis tools for studying the inner organization of cells in segmented images of epithelial tissues. More specifically, for each segmented image, we compute different persistence barcodes, which codify the lifetime of homology classes (persistent homology) along different filtrations (increasing nested sequences of simplicial complexes) that are built from the regions representing the cells in the tissue. We use a complete and well-grounded set of numerical variables over those persistence barcodes, also known as topological summaries. A novel combination of normalization methods for both the set of input segmented images and the produced barcodes allows for the proven stability results for those variables with respect to small changes in the input, as well as invariance to image scale. Our study provides new insights to this problem, such as a possible novel indicator for the development of the drosophila wing disc tissue or the importance of centroids’ distribution to differentiate some tissues from their CVT-path counterpart (a mathematical model of epithelia based on Voronoi diagrams). We also show how the use of topological summaries may improve the classification accuracy of epithelial images using a Random Forest algorithm.
  59. Persistent Homology of the Cosmic Web. I: Hierarchical Topology in \$\Lambda\$CDM Cosmologies (2021)

    Georg Wilding, Keimpe Nevenzeel, Rien van de Weygaert, Gert Vegter, Pratyush Pranav, Bernard J. T. Jones, Konstantinos Efstathiou, Job Feldbrugge
    Abstract Using a set of \$\Lambda\$CDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.
  60. Development of the Functional Connectome Topology in Adolescence: Evidence From Topological Data Analysis (2021)

    Zeus Gracia-Tabuenca, Juan Carlos Díaz-Patiño, Isaac Arelio, Martha Beatriz Moreno, Fernando A. Barrios, Sarael Alcauter
    Abstract Adolescence is a crucial developmental period in terms of behavior and mental health. Therefore, understanding how the brain develops during this stage is a fundamental challenge for neuroscience. Recent studies have modelled the brain as a network or connectome, mainly applying measures from graph theory, showing a change in its functional organization such as an increase in its segregation and integration. Topological Data Analysis (TDA) complements such modelling by extracting high-dimensional features across the whole range of connectivity values, instead of exploring a fixed set of connections. This study enquiries into the developmental trajectories of such properties using a longitudinal sample of typically developing participants (N = 98; 53/45 F/M; 6.7-18.1 years), applying TDA into their functional connectomes. In addition, we explore the effect of puberty on the individual developmental trajectories. Results showed that compared to random networks, the adolescent brain is more segregated at the global level, but more densely connected at the local level. Furthermore, developmental effects showed nonlinear trajectories for the integration of the whole brain and fronto-parietal networks, with an inflection point and increasing trajectories after puberty onset. These results add to the insights in the development of the functional organization of the adolescent. Significance Statement Topological Data Analysis may be used to explore the topology of the brain along the whole range of connectivity values instead of selecting only a fixed set of connectivity thresholds. Here, we explored some properties of the topology of the brain functional connectome, and how they develop in adolescence. First, we show that developmental trajectories are nonlinear and better explained by the puberty status than chronological age, with an inflection point around the puberty onset. The greatest effect is the increase in functional integration for the whole brain, and particularly for the Fronto-Parietal Network when exploring functional subnetworks.
  61. Steinhaus Filtration and Stable Paths in the Mapper (2020)

    Dustin L. Arendt, Matthew Broussard, Bala Krishnamoorthy, Nathaniel Saul
    Abstract Two central concepts from topological data analysis are persistence and the Mapper construction. Persistence employs a sequence of objects built on data called a filtration. A Mapper produces insightful summaries of data, and has found widespread applications in diverse areas. We define a new filtration called the cover filtration built from a single cover based on a generalized Steinhaus distance, which is a generalization of Jaccard distance. We prove a stability result: the cover filtrations of two covers are \$\alpha/m\$ interleaved, where \$\alpha\$ is a bound on bottleneck distance between covers and \$m\$ is the size of smallest set in either cover. We also show our construction is equivalent to the Cech filtration under certain settings, and the Vietoris-Rips filtration completely determines the cover filtration in all cases. We then develop a theory for stable paths within this filtration. Unlike standard results on stability in topological persistence, our definition of path stability aligns exactly with the above result on stability of cover filtration. We demonstrate how our framework can be employed in a variety of applications where a metric is not obvious but a cover is readily available. First we present a new model for recommendation systems using cover filtration. For an explicit example, stable paths identified on a movies data set represent sequences of movies constituting gentle transitions from one genre to another. As a second application in explainable machine learning, we apply the Mapper for model induction, providing explanations in the form of paths between subpopulations. Stable paths in the Mapper from a supervised machine learning model trained on the FashionMNIST data set provide improved explanations of relationships between subpopulations of images.
  62. Graph Classification via Heat Diffusion on Simplicial Complexes (2020)

    Mehmet Emin Aktas, Esra Akbas
    Abstract In this paper, we study the graph classification problem in vertex-labeled graphs. Our main goal is to classify the graphs comparing their higher-order structures thanks to heat diffusion on their simplices. We first represent vertex-labeled graphs as simplex-weighted super-graphs. We then define the diffusion Frechet function over their simplices to encode the higher-order network topology and finally reach our goal by combining the function values with machine learning algorithms. Our experiments on real-world bioinformatics networks show that using diffusion Fr\éḩet function on simplices is promising in graph classification and more effective than the baseline methods. To the best of our knowledge, this paper is the first paper in the literature using heat diffusion on higher-dimensional simplices in a graph mining problem. We believe that our method can be extended to different graph mining domains, not only the graph classification problem.
  63. Topological Data Analysis of Zebrafish Patterns (2020)

    Melissa R. McGuirl, Alexandria Volkening, Björn Sandstede
    Abstract Self-organized pattern behavior is ubiquitous throughout nature, from fish schooling to collective cell dynamics during organism development. Qualitatively these patterns display impressive consistency, yet variability inevitably exists within pattern-forming systems on both microscopic and macroscopic scales. Quantifying variability and measuring pattern features can inform the underlying agent interactions and allow for predictive analyses. Nevertheless, current methods for analyzing patterns that arise from collective behavior capture only macroscopic features or rely on either manual inspection or smoothing algorithms that lose the underlying agent-based nature of the data. Here we introduce methods based on topological data analysis and interpretable machine learning for quantifying both agent-level features and global pattern attributes on a large scale. Because the zebrafish is a model organism for skin pattern formation, we focus specifically on analyzing its skin patterns as a means of illustrating our approach. Using a recent agent-based model, we simulate thousands of wild-type and mutant zebrafish patterns and apply our methodology to better understand pattern variability in zebrafish. Our methodology is able to quantify the differential impact of stochasticity in cell interactions on wild-type and mutant patterns, and we use our methods to predict stripe and spot statistics as a function of varying cellular communication. Our work provides an approach to automatically quantifying biological patterns and analyzing agent-based dynamics so that we can now answer critical questions in pattern formation at a much larger scale.
  64. The Persistence of Large Scale Structures I: Primordial Non-Gaussianity (2020)

    Matteo Biagetti, Alex Cole, Gary Shiu
    Abstract We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multiscale topology of a data set, in our context unifying the contributions of clusters, filament loops, and cosmic voids to cosmological constraints. We describe how this method captures the imprint of primordial local non-Gaussianity on the late-time distribution of dark matter halos, using a set of N-body simulations as a proxy for real data analysis. For our best single statistic, running the pipeline on several cubic volumes of size \$40~(\rm\Gpc/h\)\textasciicircum\3\\$, we detect \$f_\\rm NL\\textasciicircum\\rm loc\=10\$ at \$97.5\%\$ confidence on \$\sim 85\%\$ of the volumes. Additionally we test our ability to resolve degeneracies between the topological signature of \$f_\\rm NL\\textasciicircum\\rm loc\\$ and variation of \$\sigma_8\$ and argue that correctly identifying nonzero \$f_\\rm NL\\textasciicircum\\rm loc\\$ in this case is possible via an optimal template method. Our method relies on information living at \$\mathcal\O\(10)\$ Mpc/h, a complementary scale with respect to commonly used methods such as the scale-dependent bias in the halo/galaxy power spectrum. Therefore, while still requiring a large volume, our method does not require sampling long-wavelength modes to constrain primordial non-Gaussianity. Moreover, our statistics are interpretable: we are able to reproduce previous results in certain limits and we make new predictions for unexplored observables, such as filament loops formed by dark matter halos in a simulation box.
  65. Spatial Applications of Topological Data Analysis: Cities, Snowflakes, Random Structures, and Spiders Spinning Under the Influence (2020)

    Michelle Feng, Mason A. Porter
    Abstract Spatial networks are ubiquitous in social, geographic, physical, and biological applications. To understand their large-scale structure, it is important to develop methods that allow one to directly probe the effects of space on structure and dynamics. Historically, algebraic topology has provided one framework for rigorously and quantitatively describing the global structure of a space, and recent advances in topological data analysis (TDA) have given scholars a new lens for analyzing network data. In this paper, we study a variety of spatial networks --- including both synthetic and natural ones --- using novel topological methods that we recently developed specifically for analyzing spatial networks. We demonstrate that our methods are able to capture meaningful quantities, with specifics that depend on context, in spatial networks and thereby provide useful insights into the structure of those networks, including a novel approach for characterizing them based on their topological structures. We illustrate these ideas with examples of synthetic networks and dynamics on them, street networks in cities, snowflakes, and webs spun by spiders under the influence of various psychotropic substances.
  66. Simplicial Neural Networks (2020)

    Stefania Ebli, Michaël Defferrard, Gard Spreemann
    Abstract We present simplicial neural networks (SNNs), a generalization of graph neural networks to data that live on a class of topological spaces called simplicial complexes. These are natural multi-dimensional extensions of graphs that encode not only pairwise relationships but also higher-order interactions between vertices - allowing us to consider richer data, including vector fields and \$n\$-fold collaboration networks. We define an appropriate notion of convolution that we leverage to construct the desired convolutional neural networks. We test the SNNs on the task of imputing missing data on coauthorship complexes.
  67. Topological Data Analysis for Arrhythmia Detection Through Modular Neural Networks (2020)

    Meryll Dindin, Yuhei Umeda, Frederic Chazal
    Abstract This paper presents an innovative and generic deep learning approach to monitor heart conditions from ECG signals. We focus our attention on both the detection and classification of abnormal heartbeats, known as arrhythmia. We strongly insist on generalization throughout the construction of a shallow deep-learning model that turns out to be effective for new unseen patient. The novelty of our approach relies on the use of topological data analysis to deal with individual differences. We show that our structure reaches the performances of the state-of-the-art methods for both arrhythmia detection and classification.
  68. Quantifying Genetic Innovation: Mathematical Foundations for the Topological Study of Reticulate Evolution (2020)

    Michael Lesnick, Raúl Rabadán, Daniel I. S. Rosenbloom
    Abstract A topological approach to the study of genetic recombination, based on persistent homology, was introduced by Chan, Carlsson, and Rabadán in 2013. This associates a sequence of signatures called barcodes to genomic data sampled from an evolutionary history. In this paper, we develop theoretical foundations for this approach. First, we present a novel formulation of the underlying inference problem. Specifically, we introduce and study the novelty profile, a simple, stable statistic of an evolutionary history which not only counts recombination events but also quantifies how recombination creates genetic diversity. We propose that the (hitherto implicit) goal of the topological approach to recombination is the estimation of novelty profiles. We then study the problem of obtaining a lower bound on the novelty profile using barcodes. We focus on a low-recombination regime, where the evolutionary history can be described by a directed acyclic graph called a galled tree, which differs from a tree only by isolated topological defects. We show that in this regime, under a complete sampling assumption, the \$1\textasciicircum\mathrm\st\\$ barcode yields a lower bound on the novelty profile, and hence on the number of recombination events. For \$i\textgreater1\$, the \$i\textasciicircum\\mathrm\th\\\$ barcode is empty. In addition, we use a stability principle to strengthen these results to ones which hold for any subsample of an arbitrary evolutionary history. To establish these results, we describe the topology of the Vietoris--Rips filtrations arising from evolutionary histories indexed by galled trees. As a step towards a probabilistic theory, we also show that for a random history indexed by a fixed galled tree and satisfying biologically reasonable conditions, the intervals of the \$1\textasciicircum\\mathrm\st\\\$ barcode are independent random variables. Using simulations, we explore the sensitivity of these intervals to recombination.
  69. A Novel Method of Extracting Topological Features From Word Embeddings (2020)

    Shafie Gholizadeh, Armin Seyeditabari, Wlodek Zadrozny
    Abstract In recent years, topological data analysis has been utilized for a wide range of problems to deal with high dimensional noisy data. While text representations are often high dimensional and noisy, there are only a few work on the application of topological data analysis in natural language processing. In this paper, we introduce a novel algorithm to extract topological features from word embedding representation of text that can be used for text classification. Working on word embeddings, topological data analysis can interpret the embedding high-dimensional space and discover the relations among different embedding dimensions. We will use persistent homology, the most commonly tool from topological data analysis, for our experiment. Examining our topological algorithm on long textual documents, we will show our defined topological features may outperform conventional text mining features.
  70. A Topological Data Analysis Approach On Predicting Phenotypes From Gene Expression Data (2020)

    Sayan Mandal, Aldo Guzmán-Sáenz, Niina Haiminen, Saugata Basu, Laxmi Parida
    Abstract The goal of this study was to investigate if gene expression measured from RNA sequencing contains enough signal to separate healthy and afflicted individuals in the context of phenotype prediction. We observed that standard machine learning methods alone performed somewhat poorly on the disease phenotype prediction task; therefore we devised an approach augmenting machine learning with topological data analysis., We describe a framework for predicting phenotype values by utilizing gene expression data transformed into sample-specific topological signatures by employing feature subsampling and persistent homology. The topological data analysis approach developed in this work yielded improved results on Parkinson’s disease phenotype prediction when measured against standard machine learning methods., This study confirms that gene expression can be a useful indicator of the presence or absence of a condition, and the subtle signal contained in this high dimensional data reveals itself when considering the intricate topological connections between expressed genes.
  71. Topological Data Analysis on Simple English Wikipedia Articles (2020)

    Matthew Wright, Xiaojun Zheng
    Abstract Single-parameter persistent homology, a key tool in topological data analysis, has been widely applied to data problems, with statistical techniques that quantify the significance of the results. In contrast, statistical techniques for two-parameter persistence, while highly desirable for real-world applications, have scarcely been considered. We present three statistical approaches for comparing geometric data using two-parameter persistent homology, and we demonstrate the applicability of these approaches on high-dimensional point-cloud data obtained from Simple English Wikipedia articles. These approaches rely on the Hilbert function, matching distance, and barcodes obtained from two-parameter persistence modules computed from the point-cloud data. We demonstrate the applicability of our methods by distinguishing certain subsets of the Wikipedia data, and by comparison with random data. Results include insights into the construction of null distributions and stability of our methods with respect to noisy data. Our statistical methods are broadly applicable for analysis of geometric data indexed by a real-valued parameter.
  72. Fibers of Failure: Classifying Errors in Predictive Processes (2020)

    Leo S. Carlsson, Mikael Vejdemo-Johansson, Gunnar Carlsson, Pär G. Jönsson
    Abstract Predictive models are used in many different fields of science and engineering and are always prone to make faulty predictions. These faulty predictions can be more or less malignant depending on the model application. We describe fibers of failure (FiFa), a method to classify failure modes of predictive processes. Our method uses Mapper, an algorithm from topological data analysis (TDA), to build a graphical model of input data stratified by prediction errors. We demonstrate two ways to use the failure mode groupings: either to produce a correction layer that adjusts predictions by similarity to the failure modes; or to inspect members of the failure modes to illustrate and investigate what characterizes each failure mode. We demonstrate FiFa on two scenarios: a convolutional neural network (CNN) predicting MNIST images with added noise, and an artificial neural network (ANN) predicting the electrical energy consumption of an electric arc furnace (EAF). The correction layer on the CNN model improved its prediction accuracy significantly while the inspection of failure modes for the EAF model provided guiding insights into the domain-specific reasons behind several high-error regions.
  73. Cell Complex Neural Networks (2020)

    Mustafa Hajij, Kyle Istvan, Ghada Zamzami
    Abstract Cell complexes are topological spaces constructed from simple blocks called cells. They generalize graphs, simplicial complexes, and polyhedral complexes that form important domains for practical applications. We propose a general, combinatorial, and unifying construction for performing neural network-type computations on cell complexes. Furthermore, we introduce inter-cellular message passing schemes, message passing schemes on cell complexes that take the topology of the underlying space into account. In particular, our method generalizes many of the most popular types of graph neural networks.
  74. Weighted-Persistent-Homology-Based Machine Learning for RNA Flexibility Analysis (2020)

    Chi Seng Pun, Brandon Yung Sin Yong, Kelin Xia
    Abstract With the great significance of biomolecular flexibility in biomolecular dynamics and functional analysis, various experimental and theoretical models are developed. Experimentally, Debye-Waller factor, also known as B-factor, measures atomic mean-square displacement and is usually considered as an important measurement for flexibility. Theoretically, elastic network models, Gaussian network model, flexibility-rigidity model, and other computational models have been proposed for flexibility analysis by shedding light on the biomolecular inner topological structures. Recently, a topology-based machine learning model has been proposed. By using the features from persistent homology, this model achieves a remarkable high Pearson correlation coefficient (PCC) in protein B-factor prediction. Motivated by its success, we propose weighted-persistent-homology (WPH)-based machine learning (WPHML) models for RNA flexibility analysis. Our WPH is a newly-proposed model, which incorporate physical, chemical and biological information into topological measurements using a weight function. In particular, we use local persistent homology (LPH) to focus on the topological information of local regions. Our WPHML model is validated on a well-established RNA dataset, and numerical experiments show that our model can achieve a PCC of up to 0.5822. The comparison with the previous sequence-information-based learning models shows that a consistent improvement in performance by at least 10% is achieved in our current model.
  75. Topological Differential Testing (2020)

    Kristopher Ambrose, Steve Huntsman, Michael Robinson, Matvey Yutin
    Abstract We introduce topological differential testing (TDT), an approach to extracting the consensus behavior of a set of programs on a corpus of inputs. TDT uses the topological notion of a simplicial complex (and implicitly draws on richer topological notions such as sheaves and persistence) to determine inputs that cause inconsistent behavior and in turn reveal \emph\de facto\ input specifications. We gently introduce TDT with a toy example before detailing its application to understanding the PDF file format from the behavior of various parsers. Finally, we discuss theoretical details and other possible applications.
  76. Topological Autoencoders (2020)

    Michael Moor, Max Horn, Bastian Rieck, Karsten Borgwardt
    Abstract We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded and that it exhibits favourable latent representations on a synthetic manifold as well as on real-world image data sets, while preserving low reconstruction errors.
  77. Topologically Densified Distributions (2020)

    Christoph Hofer, Florian Graf, Marc Niethammer, Roland Kwitt
    Abstract We study regularization in the context of small sample-size learning with over-parametrized neural networks. Specifically, we shift focus from architectural properties, such as norms on the network weights, to properties of the internal representations before a linear classifier. Specifically, we impose a topological constraint on samples drawn from the probability measure induced in that space. This provably leads to mass concentration effects around the representations of training instances, i.e., a property beneficial for generalization. By leveraging previous work to impose topological constrains in a neural network setting, we provide empirical evidence (across various vision benchmarks) to support our claim for better generalization.
  78. Community Structures in Simplicial Complexes: An Application to Wildlife Corridor Designing in Central India -- Eastern Ghats Landscape Complex, India (2020)

    Saurabh Shanu, Shashankaditya Upadhyay, Arijit Roy, Raghunandan Chundawat, Sudeepto Bhattacharya
    Abstract The concept of simplicial complex from Algebraic Topology is applied to understand and model the flow of genetic information, processes and organisms between the areas of unimpaired habitats to design a network of wildlife corridors for Tigers (Panthera Tigris Tigris) in Central India Eastern Ghats landscape complex. The work extends and improves on a previous work that has made use of the concept of minimum spanning tree obtained from the weighted graph in the focal landscape, which suggested a viable corridor network for the tiger population of the Protected Areas (PAs) in the landscape complex. Centralities of the network identify the habitat patches and the critical parameters that are central to the process of tiger movement across the network. We extend the concept of vertex centrality to that of the simplicial centrality yielding inter-vertices adjacency and connection. As a result, the ecological information propagates expeditiously and even on a local scale in these networks representing a well-integrated and self-explanatory model as a community structure. A simplicial complex network based on the network centralities calculated in the landscape matrix presents a tiger corridor network in the landscape complex that is proposed to correspond better to reality than the previously proposed model. Because of the aforementioned functional and structural properties of the network, the work proposes an ecological network of corridors for the most tenable usage by the tiger populations both in the PAs and outside the PAs in the focal landscape.
  79. A Topological Framework for Deep Learning (2020)

    Mustafa Hajij, Kyle Istvan
    Abstract We utilize classical facts from topology to show that the classification problem in machine learning is always solvable under very mild conditions. Furthermore, we show that a softmax classification network acts on an input topological space by a finite sequence of topological moves to achieve the classification task. Moreover, given a training dataset, we show how topological formalism can be used to suggest the appropriate architectural choices for neural networks designed to be trained as classifiers on the data. Finally, we show how the architecture of a neural network cannot be chosen independently from the shape of the underlying data. To demonstrate these results, we provide example datasets and show how they are acted upon by neural nets from this topological perspective.
  80. Hypothesis Testing for Shapes Using Vectorized Persistence Diagrams (2020)

    Chul Moon, Nicole A. Lazar
    Abstract Topological data analysis involves the statistical characterization of the shape of data. Persistent homology is a primary tool of topological data analysis, which can be used to analyze those topological features and perform statistical inference. In this paper, we present a two-stage hypothesis test for vectorized persistence diagrams. The first stage filters elements in the vectorized persistence diagrams to reduce false positives. The second stage consists of multiple hypothesis tests, with false positives controlled by false discovery rates. We demonstrate applications of the proposed procedure on simulated point clouds and three-dimensional rock image data. Our results show that the proposed hypothesis tests can provide flexible and informative inferences on the shape of data with lower computational cost compared to the permutation test.
  81. The Weighted Euler Curve Transform for Shape and Image Analysis (2020)

    Qitong Jiang, Sebastian Kurtek, Tom Needham
    Abstract The Euler Curve Transform (ECT) of Turner et al. is a complete invariant of an embedded simplicial complex, which is amenable to statistical analysis. We generalize the ECT to provide a similarly convenient representation for weighted simplicial complexes, objects which arise naturally, for example, in certain medical imaging applications. We leverage work of Ghrist et al. on Euler integral calculus to prove that this invariant—dubbed the Weighted Euler Curve Transform (WECT)—is also complete. We explain how to transform a segmented region of interest in a grayscale image into a weighted simplicial complex and then into a WECT representation. This WECT representation is applied to study Glioblastoma Multiforme brain tumor shape and texture data. We show that the WECT representation is effective at clustering tumors based on qualitative shape and texture features and that this clustering correlates with patient survival time.
  82. Contagion Dynamics for Manifold Learning (2020)

    Barbara I. Mahler
    Abstract Contagion maps exploit activation times in threshold contagions to assign vectors in high-dimensional Euclidean space to the nodes of a network. A point cloud that is the image of a contagion map reflects both the structure underlying the network and the spreading behaviour of the contagion on it. Intuitively, such a point cloud exhibits features of the network's underlying structure if the contagion spreads along that structure, an observation which suggests contagion maps as a viable manifold-learning technique. We test contagion maps as a manifold-learning tool on a number of different real-world and synthetic data sets, and we compare their performance to that of Isomap, one of the most well-known manifold-learning algorithms. We find that, under certain conditions, contagion maps are able to reliably detect underlying manifold structure in noisy data, while Isomap fails due to noise-induced error. This consolidates contagion maps as a technique for manifold learning.
  83. Localization in the Crowd With Topological Constraints (2020)

    Shahira Abousamra, Minh Hoai, Dimitris Samaras, Chao Chen
    Abstract We address the problem of crowd localization, i.e., the prediction of dots corresponding to people in a crowded scene. Due to various challenges, a localization method is prone to spatial semantic errors, i.e., predicting multiple dots within a same person or collapsing multiple dots in a cluttered region. We propose a topological approach targeting these semantic errors. We introduce a topological constraint that teaches the model to reason about the spatial arrangement of dots. To enforce this constraint, we define a persistence loss based on the theory of persistent homology. The loss compares the topographic landscape of the likelihood map and the topology of the ground truth. Topological reasoning improves the quality of the localization algorithm especially near cluttered regions. On multiple public benchmarks, our method outperforms previous localization methods. Additionally, we demonstrate the potential of our method in improving the performance in the crowd counting task.
  84. Topological Echoes of Primordial Physics in the Universe at Large Scales (2020)

    Alex Cole, Matteo Biagetti, Gary Shiu
    Abstract We present a pipeline for characterizing and constraining initial conditions in cosmology via persistent homology. The cosmological observable of interest is the cosmic web of large scale structure, and the initial conditions in question are non-Gaussianities (NG) of primordial density perturbations. We compute persistence diagrams and derived statistics for simulations of dark matter halos with Gaussian and non-Gaussian initial conditions. For computational reasons and to make contact with experimental observations, our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number. We use simulations with large NG (\$f_\\rm NL\\textasciicircum\\rm loc\=250\$) as templates for identifying data with mild NG (\$f_\\rm NL\\textasciicircum\\rm loc\=10\$), and running the pipeline on several cubic volumes of size \$40~(\textrm\Gpc/h\)\textasciicircum\3\\$, we detect \$f_\\rm NL\\textasciicircum\\rm loc\=10\$ at \$97.5\%\$ confidence on \$\sim 85\%\$ of the volumes for our best single statistic. Throughout we benefit from the interpretability of topological features as input for statistical inference, which allows us to make contact with previous first-principles calculations and make new predictions.
  85. Path Homology as a Stronger Analogue of Cyclomatic Complexity (2020)

    Steve Huntsman
    Abstract Cyclomatic complexity is an incompletely specified but mathematically principled software metric that can be usefully applied to both source and binary code. We consider the application of path homology as a stronger analogue of cyclomatic complexity. We have implemented an algorithm to compute path homology in arbitrary dimension and applied it to several classes of relevant flow graphs, including randomly generated flow graphs representing structured and unstructured control flow. We also compared path homology and cyclomatic complexity on a set of disassembled binaries obtained from the grep utility. There exist control flow graphs realizable at the assembly level with nontrivial path homology in arbitrary dimension. We exhibit several classes of examples in this vein while also experimentally demonstrating that path homology gives identicial results to cyclomatic complexity for at least one detailed notion of structured control flow. We also experimentally demonstrate that the two notions differ on disassembled binaries, and we highlight an example of extreme disagreement. Path homology empirically generalizes cyclomatic complexity for an elementary notion of structured code and appears to identify more structurally relevant features of control flow in general. Path homology therefore has the potential to substantially improve upon cyclomatic complexity.
  86. Capturing Dynamics of Time-Varying Data via Topology (2020)

    Lu Xian, Henry Adams, Chad M. Topaz, Lori Ziegelmeier
    Abstract One approach to understanding complex data is to study its shape through the lens of algebraic topology. While the early development of topological data analysis focused primarily on static data, in recent years, theoretical and applied studies have turned to data that varies in time. A time-varying collection of metric spaces as formed, for example, by a moving school of fish or flock of birds, can contain a vast amount of information. There is often a need to simplify or summarize the dynamic behavior. We provide an introduction to topological summaries of time-varying metric spaces including vineyards [17], crocker plots [52], and multiparameter rank functions [34]. We then introduce a new tool to summarize time-varying metric spaces: a crocker stack. Crocker stacks are convenient for visualization, amenable to machine learning, and satisfy a desirable stability property which we prove. We demonstrate the utility of crocker stacks for a parameter identification task involving an influential model of biological aggregations [54]. Altogether, we aim to bring the broader applied mathematics community up-to-date on topological summaries of time-varying metric spaces.
  87. Evolutionary Homology on Coupled Dynamical Systems With Applications to Protein Flexibility Analysis (2020)

    Zixuan Cang, Elizabeth Munch, Guo-Wei Wei
    Abstract While the spatial topological persistence is naturally constructed from a radius-based filtration, it has hardly been derived from a temporal filtration. Most topological models are designed for the global topology of a given object as a whole. There is no method reported in the literature for the topology of an individual component in an object to the best of our knowledge. For many problems in science and engineering, the topology of an individual component is important for describing its properties. We propose evolutionary homology (EH) constructed via a time evolution-based filtration and topological persistence. Our approach couples a set of dynamical systems or chaotic oscillators by the interactions of a physical system, such as a macromolecule. The interactions are approximated by weighted graph Laplacians. Simplices, simplicial complexes, algebraic groups and topological persistence are defined on the coupled trajectories of the chaotic oscillators. The resulting EH gives rise to time-dependent topological invariants or evolutionary barcodes for an individual component of the physical system, revealing its topology-function relationship. In conjunction with Wasserstein metrics, the proposed EH is applied to protein flexibility analysis, an important problem in computational biophysics. Numerical results for the B-factor prediction of a benchmark set of 364 proteins indicate that the proposed EH outperforms all the other state-of-the-art methods in the field.
  88. Topological Portraits of Multiscale Coordination Dynamics (2020)

    Mengsen Zhang, William D. Kalies, J. A. Scott Kelso, Emmanuelle Tognoli
    Abstract Living systems exhibit complex yet organized behavior on multiple spatiotemporal scales. To investigate the nature of multiscale coordination in living systems, one needs a meaningful and systematic way to quantify the complex dynamics, a challenge in both theoretical and empirical realms. The present work shows how integrating approaches from computational algebraic topology and dynamical systems may help us meet this challenge. In particular, we focus on the application of multiscale topological analysis to coordinated rhythmic processes. First, theoretical arguments are introduced as to why certain topological features and their scale-dependency are highly relevant to understanding complex collective dynamics. Second, we propose a method to capture such dynamically relevant topological information using persistent homology, which allows us to effectively construct a multiscale topological portrait of rhythmic coordination. Finally, the method is put to test in detecting transitions in real data from an experiment of rhythmic coordination in ensembles of interacting humans. The recurrence plots of topological portraits highlight collective transitions in coordination patterns that were elusive to more traditional methods. This sensitivity to collective transitions would be lost if the behavioral dynamics of individuals were treated as separate degrees of freedom instead of constituents of the topology that they collectively forge. Such multiscale topological portraits highlight collective aspects of coordination patterns that are irreducible to properties of individual parts. The present work demonstrates how the analysis of multiscale coordination dynamics can benefit from topological methods, thereby paving the way for further systematic quantification of complex, high-dimensional dynamics in living systems.
  89. Weighted Persistent Homology for Biomolecular Data Analysis (2020)

    Zhenyu Meng, D. Vijay Anand, Yunpeng Lu, Jie Wu, Kelin Xia
    Abstract In this paper, we systematically review weighted persistent homology (WPH) models and their applications in biomolecular data analysis. Essentially, the weight value, which reflects physical, chemical and biological properties, can be assigned to vertices (atom centers), edges (bonds), or higher order simplexes (cluster of atoms), depending on the biomolecular structure, function, and dynamics properties. Further, we propose the first localized weighted persistent homology (LWPH). Inspired by the great success of element specific persistent homology (ESPH), we do not treat biomolecules as an inseparable system like all previous weighted models, instead we decompose them into a series of local domains, which may be overlapped with each other. The general persistent homology or weighted persistent homology analysis is then applied on each of these local domains. In this way, functional properties, that are embedded in local structures, can be revealed. Our model has been applied to systematically study DNA structures. It has been found that our LWPH based features can be used to successfully discriminate the A-, B-, and Z-types of DNA. More importantly, our LWPH based principal component analysis (PCA) model can identify two configurational states of DNA structures in ion liquid environment, which can be revealed only by the complicated helical coordinate system. The great consistence with the helical-coordinate model demonstrates that our model captures local structure variations so well that it is comparable with geometric models. Moreover, geometric measurements are usually defined in local regions. For instance, the helical-coordinate system is limited to one or two basepairs. However, our LWPH can quantitatively characterize structure information in regions or domains with arbitrary sizes and shapes, where traditional geometrical measurements fail.
  90. Topological Data Analysis in Text Classification: Extracting Features With Additive Information (2020)

    Shafie Gholizadeh, Ketki Savle, Armin Seyeditabari, Wlodek Zadrozny
    Abstract While the strength of Topological Data Analysis has been explored in many studies on high dimensional numeric data, it is still a challenging task to apply it to text. As the primary goal in topological data analysis is to define and quantify the shapes in numeric data, defining shapes in the text is much more challenging, even though the geometries of vector spaces and conceptual spaces are clearly relevant for information retrieval and semantics. In this paper, we examine two different methods of extraction of topological features from text, using as the underlying representations of words the two most popular methods, namely word embeddings and TF-IDF vectors. To extract topological features from the word embedding space, we interpret the embedding of a text document as high dimensional time series, and we analyze the topology of the underlying graph where the vertices correspond to different embedding dimensions. For topological data analysis with the TF-IDF representations, we analyze the topology of the graph whose vertices come from the TF-IDF vectors of different blocks in the textual document. In both cases, we apply homological persistence to reveal the geometric structures under different distance resolutions. Our results show that these topological features carry some exclusive information that is not captured by conventional text mining methods. In our experiments we observe adding topological features to the conventional features in ensemble models improves the classification results (up to 5\%). On the other hand, as expected, topological features by themselves may be not sufficient for effective classification. It is an open problem to see whether TDA features from word embeddings might be sufficient, as they seem to perform within a range of few points from top results obtained with a linear support vector classifier.
  91. Interpretable Phase Detection and Classification With Persistent Homology (2020)

    Alex Cole, Gregory J. Loges, Gary Shiu
    Abstract We apply persistent homology to the task of discovering and characterizing phase transitions, using lattice spin models from statistical physics for working examples. Persistence images provide a useful representation of the homological data for conducting statistical tasks. To identify the phase transitions, a simple logistic regression on these images is sufficient for the models we consider, and interpretable order parameters are then read from the weights of the regression. Magnetization, frustration and vortex-antivortex structure are identified as relevant features for characterizing phase transitions.
  92. Tree Decomposition of Reeb Graphs, Parametrized Complexity, and Applications to Phylogenetics (2020)

    Anastasios Stefanou
    Abstract Inspired by the interval decomposition of persistence modules and the extended Newick format of phylogenetic networks, we show that, inside the larger category of partially ordered Reeb graphs, every Reeb graph with n leaves and first Betti number s, can be identified with a coproduct of at most \$\$2\textasciicircums\$\$2s partially ordered trees with \$\$(n + s)\$\$(n+s) leaves. Reeb graphs are therefore classified up to isomorphism by their tree-decomposition. An implication of this result, is that the isomorphism problem for Reeb graphs is fixed parameter tractable when the parameter is the first Betti number. We propose partially ordered Reeb graphs as a model for time consistent phylogenetic networks and propose a certain Hausdorff distance as a metric on these structures.
  93. Complexes of Tournaments, Directionality Filtrations and Persistent Homology (2020)

    Dejan Govc, Ran Levi, Jason P. Smith
    Abstract Complete digraphs are referred to in the combinatorics literature as tournaments. We consider a family of semi-simplicial complexes, that we refer to as "tournaplexes", whose simplices are tournaments. In particular, given a digraph \$\mathcal\G\\$, we associate with it a "flag tournaplex" which is a tournaplex containing the directed flag complex of \$\mathcal\G\\$, but also the geometric realisation of cliques that are not directed. We define several types of filtrations on tournaplexes, and exploiting persistent homology, we observe that flag tournaplexes provide finer means of distinguishing graph dynamics than the directed flag complex. We then demonstrate the power of these ideas by applying them to graph data arising from the Blue Brain Project's digital reconstruction of a rat's neocortex.
  94. Topological Machine Learning for Multivariate Time Series (2020)

    Chengyuan Wu, Carol Anne Hargreaves
    Abstract We develop a framework for analyzing multivariate time series using topological data analysis (TDA) methods. The proposed methodology involves converting the multivariate time series to point cloud data, calculating Wasserstein distances between the persistence diagrams and using the \$k\$-nearest neighbors algorithm (\$k\$-NN) for supervised machine learning. Two methods (symmetry-breaking and anchor points) are also introduced to enable TDA to better analyze data with heterogeneous features that are sensitive to translation, rotation, or choice of coordinates. We apply our methods to room occupancy detection based on 5 time-dependent variables (temperature, humidity, light, CO2 and humidity ratio). Experimental results show that topological methods are effective in predicting room occupancy during a time window. We also apply our methods to an Activity Recognition dataset and obtained good results.
  95. Protein-Folding Analysis Using Features Obtained by Persistent Homology (2020)

    Takashi Ichinomiya, Ippei Obayashi, Yasuaki Hiraoka
    Abstract Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molecular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological features in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the protein structure based on persistent homology and applied this method to molecular dynamics simulations of chignolin. Using principle component analysis or nonnegative matrix factorization, our analysis method revealed two stable states and one saddle state, corresponding to the native, misfolded, and transition states, respectively. We also identified an unfolded state with slow dynamics in the reduced space. Our method serves as a promising tool to understand the protein-folding process.
  96. Generalized Penalty for Circular Coordinate Representation (2020)

    Hengrui Luo, Alice Patania, Jisu Kim, Mikael Vejdemo-Johansson
    Abstract Topological Data Analysis (TDA) provides novel approaches that allow us to analyze the geometrical shapes and topological structures of a dataset. As one important application, TDA can be used for data visualization and dimension reduction. We follow the framework of circular coordinate representation, which allows us to perform dimension reduction and visualization for high-dimensional datasets on a torus using persistent cohomology. In this paper, we propose a method to adapt the circular coordinate framework to take into account sparsity in high-dimensional applications. We use a generalized penalty function instead of an \$L_\2\\$ penalty in the traditional circular coordinate algorithm. We provide simulation experiments and real data analysis to support our claim that circular coordinates with generalized penalty will accommodate the sparsity in high-dimensional datasets under different sampling schemes while preserving the topological structures.
  97. Persistent Homology Advances Interpretable Machine Learning for Nanoporous Materials (2020)

    Aditi S. Krishnapriyan, Joseph Montoya, Jens Hummelshøj, Dmitriy Morozov
    Abstract Machine learning for nanoporous materials design and discovery has emerged as a promising alternative to more time-consuming experiments and simulations. The challenge with this approach is the selection of features that enable universal and interpretable materials representations across multiple prediction tasks. We use persistent homology to construct holistic representations of the materials structure. We show that these representations can also be augmented with other generic features such as word embeddings from natural language processing to capture chemical information. We demonstrate our approach on multiple metal-organic framework datasets by predicting a variety of gas adsorption targets. Our results show considerable improvement in both accuracy and transferability across targets compared to models constructed from commonly used manually curated features. Persistent homology features allow us to locate the pores that correlate best to adsorption at different pressures, contributing to understanding atomic level structure-property relationships for materials design.
  98. Model Comparison via Simplicial Complexes and Persistent Homology (2020)

    Sean T. Vittadello, Michael P. H. Stumpf
    Abstract In many scientific and technological contexts we have only a poor understanding of the structure and details of appropriate mathematical models. We often need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. But there is a lack of rigorous methods to compare different models \emph\a priori\. Here we develop and illustrate two such approaches that allow us to compare model structures in a systematic way. Using well-developed and understood concepts from simplicial geometry we are able to define a distance based on the persistent homology applied to the simplicial complexes that captures the model structure. In this way we can identify shared topological features of different models. We then expand this, and move from a distance between simplicial complexes to studying equivalences between models in order to determine their functional relatedness.
  99. Topological Electronic Structure and Weyl Points in Nonsymmorphic Hexagonal Materials (2020)

    Rafael González-Hernández, Erick Tuiran, Bernardo Uribe
    Abstract Using topological band theory analysis we show that the nonsymmorphic symmetry operations in hexagonal lattices enforce Weyl points at the screw-invariant high-symmetry lines of the band structure. The corepresentation theory and connectivity group theory show that Weyl points are generated by band crossings in accordion-like and hourglass-like dispersion relations. These Weyl points are stable against weak perturbations and are protected by the screw rotation symmetry. Based on first-principles calculations we found a complete agreement between the topological predicted energy dispersion relations and real hexagonal materials. Topological charge (chirality) and Berry curvature calculations show the simultaneous formation of Weyl points and nodal-lines in 4d transition-metal trifluorides such as AgF3 and AuF3. Furthermore, a large intrinsic spin-Hall conductivity was found due to the combined strong spin-orbit coupling and multiple Weyl-point crossings in the electronic structure. These materials could be used to the spin/charge conversion in more energy-efficient spintronic devices.
  100. Quantitative and Interpretable Order Parameters for Phase Transitions From Persistent Homology (2020)

    Alex Cole, Gregory J. Loges, Gary Shiu
    Abstract We apply modern methods in computational topology to the task of discovering and characterizing phase transitions. As illustrations, we apply our method to four two-dimensional lattice spin models: the Ising, square ice, XY, and fully-frustrated XY models. In particular, we use persistent homology, which computes the births and deaths of individual topological features as a coarse-graining scale or sublevel threshold is increased, to summarize multiscale and high-point correlations in a spin configuration. We employ vector representations of this information called persistence images to formulate and perform the statistical task of distinguishing phases. For the models we consider, a simple logistic regression on these images is sufficient to identify the phase transition. Interpretable order parameters are then read from the weights of the regression. This method suffices to identify magnetization, frustration, and vortex-antivortex structure as relevant features for phase transitions in our models. We also define "persistence" critical exponents and study how they are related to those critical exponents usually considered.
  101. Automatic Tree Ring Detection Using Jacobi Sets (2020)

    Kayla Makela, Tim Ophelders, Michelle Quigley, Elizabeth Munch, Daniel Chitwood, Asia Dowtin
    Abstract Tree ring widths are an important source of climatic and historical data, but measuring these widths typically requires extensive manual work. Computer vision techniques provide promising directions towards the automation of tree ring detection, but most automated methods still require a substantial amount of user interaction to obtain high accuracy. We perform analysis on 3D X-ray CT images of a cross-section of a tree trunk, known as a tree disk. We present novel automated methods for locating the pith (center) of a tree disk, and ring boundaries. Our methods use a combination of standard image processing techniques and tools from topological data analysis. We evaluate the efficacy of our method for two different CT scans by comparing its results to manually located rings and centers and show that it is better than current automatic methods in terms of correctly counting each ring and its location. Our methods have several parameters, which we optimize experimentally by minimizing edit distances to the manually obtained locations.
  102. PersGNN: Applying Topological Data Analysis and Geometric Deep Learning to Structure-Based Protein Function Prediction (2020)

    Nicolas Swenson, Aditi S. Krishnapriyan, Aydin Buluc, Dmitriy Morozov, Katherine Yelick
    Abstract Understanding protein structure-function relationships is a key challenge in computational biology, with applications across the biotechnology and pharmaceutical industries. While it is known that protein structure directly impacts protein function, many functional prediction tasks use only protein sequence. In this work, we isolate protein structure to make functional annotations for proteins in the Protein Data Bank in order to study the expressiveness of different structure-based prediction schemes. We present PersGNN - an end-to-end trainable deep learning model that combines graph representation learning with topological data analysis to capture a complex set of both local and global structural features. While variations of these techniques have been successfully applied to proteins before, we demonstrate that our hybridized approach, PersGNN, outperforms either method on its own as well as a baseline neural network that learns from the same information. PersGNN achieves a 9.3% boost in area under the precision recall curve (AUPR) compared to the best individual model, as well as high F1 scores across different gene ontology categories, indicating the transferability of this approach.
  103. From Trees to Barcodes and Back Again: Theoretical and Statistical Perspectives (2020)

    Lida Kanari, Adélie Garin, Kathryn Hess
    Abstract Methods of topological data analysis have been successfully applied in a wide range of fields to provide useful summaries of the structure of complex data sets in terms of topological descriptors, such as persistence diagrams. While there are many powerful techniques for computing topological descriptors, the inverse problem, i.e., recovering the input data from topological descriptors, has proved to be challenging. In this article we study in detail the Topological Morphology Descriptor (TMD), which assigns a persistence diagram to any tree embedded in Euclidean space, and a sort of stochastic inverse to the TMD, the Topological Neuron Synthesis (TNS) algorithm, gaining both theoretical and computational insights into the relation between the two. We propose a new approach to classify barcodes using symmetric groups, which provides a concrete language to formulate our results. We investigate to what extent the TNS recovers a geometric tree from its TMD and describe the effect of different types of noise on the process of tree generation from persistence diagrams. We prove moreover that the TNS algorithm is stable with respect to specific types of noise.
  104. Uncovering the Topology of Time-Varying fMRI Data Using Cubical Persistence (2020)

    Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf, Nicholas Turk-Browne, Smita Krishnaswamy
    Abstract Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data presents a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie 'Partly Cloudy'. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.
  105. HERMES: Persistent Spectral Graph Software (2020)

    Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei
    Abstract Persistent homology (PH) is one of the most popular tools in topological data analysis (TDA), while graph theory has had a significant impact on data science. Our earlier work introduced the persistent spectral graph (PSG) theory as a unified multiscale paradigm to encompass TDA and geometric analysis. In PSG theory, families of persistent Laplacians (PLs) corresponding to various topological dimensions are constructed via a filtration to sample a given dataset at multiple scales. The harmonic spectra from the null spaces of PLs offer the same topological invariants, namely persistent Betti numbers, at various dimensions as those provided by PH, while the non-harmonic spectra of PLs give rise to additional geometric analysis of the shape of the data. In this work, we develop an open-source software package, called highly efficient robust multidimensional evolutionary spectra (HERMES), to enable broad applications of PSGs in science, engineering, and technology. To ensure the reliability and robustness of HERMES, we have validated the software with simple geometric shapes and complex datasets from three-dimensional (3D) protein structures. We found that the smallest non-zero eigenvalues are very sensitive to data abnormality.
  106. Representations of Energy Landscapes by Sublevelset Persistent Homology: An Example With N-Alkanes (2020)

    Joshua Mirth, Yanqin Zhai, Johnathan Bush, Enrique G. Alvarado, Howie Jordan, Mark Heim, Bala Krishnamoorthy, Markus Pflaum, Aurora Clark, Y. Z, Henry Adams
    Abstract Encoding the complex features of an energy landscape is a challenging task, and often chemists pursue the most salient features (minima and barriers) along a highly reduced space, i.e. 2- or 3-dimensions. Even though disconnectivity graphs or merge trees summarize the connectivity of the local minima of an energy landscape via the lowest-barrier pathways, there is more information to be gained by also considering the topology of each connected component at different energy thresholds (or sublevelsets). We propose sublevelset persistent homology as an appropriate tool for this purpose. Our computations on the configuration phase space of n-alkanes from butane to octane allow us to conjecture, and then prove, a complete characterization of the sublevelset persistent homology of the alkane \$C_m H_\2m+2\\$ potential energy landscapes, for all \$m\$, and in all homological dimensions. We further compare both the analytical configurational potential energy landscapes and sampled data from molecular dynamics simulation, using the united and all-atom descriptions of the intramolecular interactions. In turn, this supports the application of distance metrics to quantify sampling fidelity and lays the foundation for future work regarding new metrics that quantify differences between the topological features of high-dimensional energy landscapes.
  107. Dynamic State Analysis of a Driven Magnetic Pendulum Using Ordinal Partition Networks and Topological Data Analysis (2020)

    Audun Myers, Firas A. Khasawneh
    Abstract Abstract. The use of complex networks for time series analysis has recently shown to be useful as a tool for detecting dynamic state changes for a wide variety of applications. In this work, we implement the commonly used ordinal partition network to transform a time series into a network for detecting these state changes for the simple magnetic pendulum. The time series that we used are obtained experimentally from a base-excited magnetic pendulum apparatus, and numerically from the corresponding governing equations. The magnetic pendulum provides a relatively simple, non-linear example demonstrating transitions from periodic to chaotic motion with the variation of system parameters. For our method, we implement persistent homology, a shape measuring tool from Topological Data Analysis (TDA), to summarize the shape of the resulting ordinal partition networks as a tool for detecting state changes. We show that this network analysis tool provides a clear distinction between periodic and chaotic time series. Another contribution of this work is the successful application of the networks-TDA pipeline, for the first time, to signals from non-autonomous nonlinear systems. This opens the door for our approach to be used as an automatic design tool for studying the effect of design parameters on the resulting system response. Other uses of this approach include fault detection from sensor signals in a wide variety of engineering operations.
  108. PI-Net: A Deep Learning Approach to Extract Topological Persistence Images (2020)

    Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew Buman, Pavan Turaga
    Abstract Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustness topological representations provide against different types of physical nuisance variables seen in real-world data, such as view-point, illumination, and more. However, key bottlenecks to their large scale adoption are computational expenditure and difficulty incorporating them in a differentiable architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a novel one-step approach to generate PIs directly from the input data. We design two separate convolutional neural network architectures, one designed to take in multi-variate time series signals as input and another that accepts multi-channel images as input. We call these networks Signal PI-Net and Image PINet respectively. To the best of our knowledge, we are the first to propose the use of deep learning for computing topological features directly from data. We explore the use of the proposed PI-Net architectures on two applications: human activity recognition using tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of PIs in supervised deep learning architectures and speed up of several orders of magnitude for extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.
  109. Prediction in Cancer Genomics Using Topological Signatures and Machine Learning (2020)

    Georgina Gonzalez, Arina Ushakova, Radmila Sazdanovic, Javier Arsuaga
    Abstract Copy Number Aberrations, gains and losses of genomic regions, are a hallmark of cancer and can be experimentally detected using microarray comparative genomic hybridization (aCGH). In previous works, we developed a topology based method to analyze aCGH data whose output are regions of the genome where copy number is altered in patients with a predetermined cancer phenotype. We call this method Topological Analysis of array CGH (TAaCGH). Here we combine TAaCGH with machine learning techniques to build classifiers using copy number aberrations. We chose logistic regression on two different binary phenotypes related to breast cancer to illustrate this approach. The first case consists of patients with over-expression of the ERBB2 gene. Over-expression of ERBB2 is commonly regulated by a copy number gain in chromosome arm 17q. TAaCGH found the region 17q11-q22 associated with the phenotype and using logistic regression we reduced this region to 17q12-q21.31 correctly classifying 78% of the ERBB2 positive individuals (sensitivity) in a validation data set. We also analyzed over-expression in Estrogen Receptor (ER), a second phenotype commonly observed in breast cancer patients and found that the region 5p14.3-12 together with six full arms were associated with the phenotype. Our method identified 4p, 6p and 16q as the strongest predictors correctly classifying 76% of ER positives in our validation data set. However, for this set there was a significant increase in the false positive rate (specificity). We suggest that topological and machine learning methods can be combined for prediction of phenotypes using genetic data.
  110. Topological Descriptors Help Predict Guest Adsorption in Nanoporous Materials (2020)

    Aditi S. Krishnapriyan, Maciej Haranczyk, Dmitriy Morozov
    Abstract Machine learning has emerged as an attractive alternative to experiments and simulations for predicting material properties. Usually, such an approach relies on specific domain knowledge for feature design: each learning target requires careful selection of features that an expert recognizes as important for the specific task. The major drawback of this approach is that computation of only a few structural features has been implemented so far, and it is difficult to tell a priori which features are important for a particular application. The latter problem has been empirically observed for predictors of guest uptake in nanoporous materials: local and global porosity features become dominant descriptors at low and high pressures, respectively. We investigate a feature representation of materials using tools from topological data analysis. Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales. We combine our topological descriptor with traditional structural features and investigate the relative importance of each to the prediction tasks. We demonstrate an application of this feature representation by predicting methane adsorption in zeolites, for pressures in the range 1–200 bar. Our results not only show a considerable improvement compared to the baseline, but they also highlight that topological features capture information complementary to the structural features. This is especially important for the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by investigation of the importance of individual topological features in the adsorption model, we are able to pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to our atom-level understanding of structure–property relationships.
  111. Topological Descriptors Help Predict Guest Adsorption in Nanoporous Materials (2020)

    Aditi S. Krishnapriyan, Maciej Haranczyk, Dmitriy Morozov
    Abstract Machine learning has emerged as an attractive alternative to experiments and simulations for predicting material properties. Usually, such an approach relies on specific domain knowledge for feature design: each learning target requires careful selection of features that an expert recognizes as important for the specific task. The major drawback of this approach is that computation of only a few structural features has been implemented so far, and it is difficult to tell a priori which features are important for a particular application. The latter problem has been empirically observed for predictors of guest uptake in nanoporous materials: local and global porosity features become dominant descriptors at low and high pressures, respectively. We investigate a feature representation of materials using tools from topological data analysis. Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales. We combine our topological descriptor with traditional structural features and investigate the relative importance of each to the prediction tasks. We demonstrate an application of this feature representation by predicting methane adsorption in zeolites, for pressures in the range of 1-200 bar. Our results not only show a considerable improvement compared to the baseline, but they also highlight that topological features capture information complementary to the structural features: this is especially important for the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by investigation of the importance of individual topological features in the adsorption model, we are able to pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to our atom-level understanding of structure-property relationships.
  112. Weighted Persistent Homology for Osmolyte Molecular Aggregation and Hydrogen-Bonding Network Analysis (2020)

    D. Vijay Anand, Zhenyu Meng, Kelin Xia, Yuguang Mu
    Abstract It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically different properties in a protein folding process. Even with the enormous theoretical and experimental research work on these two osmolytes, various aspects of their underlying mechanisms still remain largely elusive. In this paper, we propose to use the weighted persistent homology to systematically study the osmolytes molecular aggregation and their hydrogen-bonding network from a local topological perspective. We consider two weighted models, i.e., localized persistent homology (LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed to quantitatively characterize the topological features from LPH and IPH, together with persistent Betti number (PBN). More specifically, from the localized persistent homology models, we have found that TMAO and urea have very different local topology. TMAO is found to exhibit a local network structure. With the concentration increase, the circle elements in these networks show a clear increase in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 12 Å. From the interactive persistent homology models, it has been found that our persistent radial distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used to characterize the local interaction information. Other than the clear difference of the first peak value of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the local-scale IPH. These localized topological information has never been revealed before. Since graphs can be transferred into simplicial complexes by the clique complex, our weighted persistent homology models can be used in the analysis of various networks and graphs from any molecular structures and aggregation systems.
  113. Persistent Homology to Quantify the Quality of Surface-Supported Covalent Networks (2019)

    Abraham Gutierrez, Mickaël Buchet, Sylvain Clair
    Abstract Covalent networks formed by on-surface synthesis usually suffer from the presence of a large number of defects. We report on a methodology to characterize such two-dimensional networks from their experimental images obtained by scanning probe microscopy. The computation is based on a persistent homology approach and provides a quantitative score indicative of the network homogeneity. We compare our scoring method with results previously obtained using minimal spanning tree analyses and we apply it to some molecular systems appearing in the existing literature.
  114. The Geometry of Synchronization Problems and Learning Group Actions (2019)

    Tingran Gao, Jacek Brodzki, Sayan Mukherjee
    Abstract We develop a geometric framework, based on the classical theory of fibre bundles, to characterize the cohomological nature of a large class of synchronization-type problems in the context of graph inference and combinatorial optimization. We identify each synchronization problem in topological group G on connected graph ΓΓ\Gamma with a flat principal G-bundle over ΓΓ\Gamma , thus establishing a classification result for synchronization problems using the representation variety of the fundamental group of ΓΓ\Gamma into G. We then develop a twisted Hodge theory on flat vector bundles associated with these flat principal G-bundles, and provide a geometric realization of the graph connection Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham–Hodge cochain complex. Motivated by these geometric intuitions, we propose to study the problem of learning group actions—partitioning a collection of objects based on the local synchronizability of pairwise correspondence relations—and provide a heuristic synchronization-based algorithm for solving this type of problems. We demonstrate the efficacy of this algorithm on simulated and real datasets.
  115. Nonlinear Dynamic Approaches to Identify Atrial Fibrillation Progression Based on Topological Methods (2019)

    Bahareh Safarbali, Seyed Mohammad Reza Hashemi Golpayegani
    Abstract In recent years, atrial fibrillation (AF) development from paroxysmal to persistent or permanent forms has become an important issue in cardiovascular disorders. Information about AF pattern of presentation (paroxysmal, persistent, or permanent) was useful in the management of algorithms in each category. This management is aimed at reducing symptoms and stopping severe problems associated with AF. AF classification has been based on time duration and episodes until now. In particular, complexity changes in Heart Rate Variation (HRV) may contain clinically relevant signals of imminent systemic dysregulation. A number of nonlinear methods based on phase space and topological properties can give more insight into HRV abnormalities such as fibrillation. Aiming to provide a nonlinear tool to qualitatively classify AF stages, we proposed two geometrical indices (fractal dimension and persistent homology) based on HRV phase space, which can successfully replicate the changes in AF progression. The study population includes 38 lone AF patients and 20 normal subjects, which are collected from the Physio-Bank database. “Time of Life (TOL)” is proposed as a new feature based on the initial and final Čech radius in the persistent homology diagram. A neural network was implemented to prove the effectiveness of both TOL and fractal dimension as classification features. The accuracy of classification performance was 93%. The proposed indices provide a signal representation framework useful to understand the dynamic changes in AF cardiac patterns and to classify normal and pathological rhythms.
  116. A Topological Approach to Selecting Models of Biological Experiments (2019)

    M. Ulmer, Lori Ziegelmeier, Chad M. Topaz
    Abstract We use topological data analysis as a tool to analyze the fit of mathematical models to experimental data. This study is built on data obtained from motion tracking groups of aphids in [Nilsen et al., PLOS One, 2013] and two random walk models that were proposed to describe the data. One model incorporates social interactions between the insects via a functional dependence on an aphid’s distance to its nearest neighbor. The second model is a control model that ignores this dependence. We compare data from each model to data from experiment by performing statistical tests based on three different sets of measures. First, we use time series of order parameters commonly used in collective motion studies. These order parameters measure the overall polarization and angular momentum of the group, and do not rely on a priori knowledge of the models that produced the data. Second, we use order parameter time series that do rely on a priori knowledge, namely average distance to nearest neighbor and percentage of aphids moving. Third, we use computational persistent homology to calculate topological signatures of the data. Analysis of the a priori order parameters indicates that the interactive model better describes the experimental data than the control model does. The topological approach performs as well as these a priori order parameters and better than the other order parameters, suggesting the utility of the topological approach in the absence of specific knowledge of mechanisms underlying the data.
  117. Text Classification via Network Topology: A Case Study on the Holy Quran (2019)

    Mehmet Emin Aktas, Esra Akbas
    Abstract Due to the growth in the number of texts and documents available online, machine learning based text classification systems are getting more popular recently. Feature extraction, converting unstructured text into a structured feature space, is one of the essential tasks for text classification. In this paper, we propose a novel feature extraction approach for text classification using the network representation of text, network topology, and machine learning techniques. We present experimental results on classifying the Holy Quran chapters based on the place each chapter was revealed to illustrate the effectiveness of the approach.
  118. Fast and Accurate Tumor Segmentation of Histology Images Using Persistent Homology and Deep Convolutional Features (2019)

    Talha Qaiser, Yee-Wah Tsang, Daiki Taniyama, Naoya Sakamoto, Kazuaki Nakane, David Epstein, Nasir Rajpoot
    Abstract Tumor segmentation in whole-slide images of histology slides is an important step towards computer-assisted diagnosis. In this work, we propose a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs). For a given image patch, the homology profiles are derived by efficient computation of persistent homology, which is an algebraic tool from homology theory. We propose an efficient way of computing topological persistence of an image, alternative to simplicial homology. The PHPs are devised to distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei. We propose two variants of our method for tumor segmentation: one that targets speed without compromising accuracy and the other that targets higher accuracy. The fast version is based on a selection of exemplar image patches from a convolution neural network (CNN) and patch classification by quantifying the divergence between the PHPs of exemplars and the input image patch. Detailed comparative evaluation shows that the proposed algorithm is significantly faster than competing algorithms while achieving comparable results. The accurate version combines the PHPs and high-level CNN features and employs a multi-stage ensemble strategy for image patch labeling. Experimental results demonstrate that the combination of PHPs and CNN features outperform competing algorithms. This study is performed on two independently collected colorectal datasets containing adenoma, adenocarcinoma, signet, and healthy cases. Collectively, the accurate tumor segmentation produces the highest average patch-level F1-score, as compared with competing algorithms, on malignant and healthy cases from both the datasets. Overall the proposed framework highlights the utility of persistent homology for histopathology image analysis.
  119. Microscopic Description of Yielding in Glass Based on Persistent Homology (2019)

    Tatsuhiko Shirai, Takenobu Nakamura
    Abstract Persistent homology (PH) was applied to probe the structural changes of glasses under shear. PH associates each local atomistic structure in an atomistic configuration to a geometric object, namely, a hole, and evaluates the robustness of these holes against noise. We found that the microscopic structures were qualitatively different before and after yielding. The structures before yielding contained robust holes, the number of which decreased after yielding. We also observed that the structures after yielding approached those of quickly quenched glass. This work demonstrates the crucial role of robust holes in yielding and provides an interpretation based on geometry.
  120. Two-Tier Mapper, an Unbiased Topology-Based Clustering Method for Enhanced Global Gene Expression Analysis (2019)

    Rachel Jeitziner, Mathieu Carrière, Jacques Rougemont, Steve Oudot, Kathryn Hess, Cathrin Brisken
    Abstract MOTIVATION: Unbiased clustering methods are needed to analyze growing numbers of complex datasets. Currently available clustering methods often depend on parameters that are set by the user, they lack stability, and are not applicable to small datasets. To overcome these shortcomings we used topological data analysis, an emerging field of mathematics that discerns additional feature and discovers hidden insights on datasets and has a wide application range. RESULTS: We have developed a topology-based clustering method called Two-Tier Mapper (TTMap) for enhanced analysis of global gene expression datasets. First, TTMap discerns divergent features in the control group, adjusts for them, and identifies outliers. Second, the deviation of each test sample from the control group in a high-dimensional space is computed, and the test samples are clustered using a new Mapper-based topological algorithm at two levels: a global tier and local tiers. All parameters are either carefully chosen or data-driven, avoiding any user-induced bias. The method is stable, different datasets can be combined for analysis, and significant subgroups can be identified. It outperforms current clustering methods in sensitivity and stability on synthetic and biological datasets, in particular when sample sizes are small; outcome is not affected by removal of control samples, by choice of normalization, or by subselection of data. TTMap is readily applicable to complex, highly variable biological samples and holds promise for personalized medicine. AVAILABILITY AND IMPLEMENTATION: TTMap is supplied as an R package in Bioconductor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  121. Persistent Homology Machine Learning for Fingerprint Classification (2019)

    N. Giansiracusa, R. Giansiracusa, C. Moon
    Abstract The fingerprint classification problem is to sort fingerprints into predetermined groups, such as arch, loop, and whorl. It was asserted in the literature that minutiae points, which are commonly used for fingerprint matching, are not useful for classification. We show that, to the contrary, near state-of-the-art classification accuracy rates can be achieved when applying topological data analysis (TDA) to 3-dimensional point clouds of oriented minutiae points. We also apply TDA to fingerprint ink-roll images, which yields a lower accuracy rate but still shows promise; moreover, combining the two approaches outperforms each one individually. These methods use supervised learning applied to persistent homology and allow us to explore feature selection on barcodes, an important topic at the interface between TDA and machine learning. We test our classification algorithms on the NIST fingerprint database SD-27.
  122. Analyzing Collective Motion With Machine Learning and Topology (2019)

    Dhananjay Bhaskar, Angelika Manhart, Jesse Milzman, John T. Nardini, Kathleen M. Storey, Chad M. Topaz, Lori Ziegelmeier
    Abstract We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters.
  123. Combining Geometric and Topological Information in Image Segmentation (2019)

    Hengrui Luo, Justin Strait
    Abstract A fundamental problem in computer vision is image segmentation, where the goal is to delineate the boundary of an object in the image. The focus of this work is on the segmentation of grayscale images and its purpose is two-fold. First, we conduct an in-depth study comparing active contour and topology-based methods in a statistical framework, two popular approaches for boundary detection of 2-dimensional images. Certain properties of the image dataset may favor one method over the other, both from an interpretability perspective as well as through evaluation of performance measures. Second, we propose the use of topological knowledge to assist an active contour method, which can potentially incorporate prior shape information. The latter is known to be extremely sensitive to algorithm initialization, and thus, we use a topological model to provide an automatic initialization. In addition, our proposed model can handle objects in images with more complex topological structures, including objects with holes and multiple objects within one image. We demonstrate this on artificially-constructed image datasets from computer vision, as well as real medical image data.
  124. Revealing Key Structural Features Hidden in Liquids and Glasses (2019)

    Hajime Tanaka, Hua Tong, Rui Shi, John Russo
    Abstract A great success of solid state physics comes from the characterization of crystal structures in the reciprocal (wave vector) space. The power of structural characterization in Fourier space originates from the breakdown of translational and rotational symmetries. However, unlike crystals, liquids and amorphous solids possess continuous translational and rotational symmetries on a macroscopic scale, which makes Fourier space analysis much less effective. Lately, several studies have revealed local breakdown of translational and rotational symmetries even for liquids and glasses. Here, we review several mathematical methods used to characterize local structural features of apparently disordered liquids and glasses in real space. We distinguish two types of local ordering in liquids and glasses: energy-driven and entropy-driven. The former, which is favoured energetically by symmetry-selective directional bonding, is responsible for anomalous behaviours commonly observed in water-type liquids such as water, silicon, germanium and silica. The latter, which is often favoured entropically, shows connections with the heterogeneous, slow dynamics found in hard-sphere-like glass-forming liquids. We also discuss the relationship between such local ordering and crystalline structures and its impact on glass-forming ability.
  125. Topological Gene Expression Networks Recapitulate Brain Anatomy and Function (2019)

    Alice Patania, Pierluigi Selvaggi, Mattia Veronese, Ottavia Dipasquale, Paul Expert, Giovanni Petri
    Abstract Understanding how gene expression translates to and affects human behavior is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze gene co-expression data. We first validate the method by reproducing key results from the literature on the Allen Human Brain Atlas and the correlations between resting-state fMRI and gene co-expression maps. We then analyze a dopamine-related gene set and find that co-expression networks produced by Mapper return a structure that matches the well-known anatomy of the dopaminergic pathway. Our results suggest that network based descriptions can be a powerful tool to explore the relationships between genetic pathways and their association with brain function and its perturbation due to illness and/or pharmacological challenges., In this paper, we described a gene co-expression analysis pipeline that produces networks that we show to be closely related to either brain function and to neurotransmitter pathways. Our results suggest that this pipeline could be developed into a platform enabling the exploration of the effects of physiological and pathological alterations to specific gene sets, including profiling drugs effects.
  126. Ghrist Barcoded Video Frames. Application in Detecting Persistent Visual Scene Surface Shapes Captured in Videos (2019)

    Arjuna P. H. Don, James F. Peters
    Abstract This article introduces an application of Ghrist barcodes in the study of persistent Betti numbers derived from vortex nerve complexes found in triangulations of video frames. A Ghrist barcode (also called a persistence barcode) is a topology of data pic- tograph useful in representing the persistence of the features of changing shapes. The basic approach is to introduce a free Abelian group representation of intersecting filled polygons on the barycenters of the triangles of Alexandroff nerves. An Alexandroff nerve is a maximal collection of triangles of a common vertex in the triangulation of a finite, bounded planar region. In our case, the planar region is a video frame. A Betti number is a count of the number of generators is a finite Abelian group. The focus here is on the persistent Betti numbers across sequences of triangulated video frames. Each Betti number is mapped to an entry in a Ghrist barcode. Two main results are given, namely, vortex nerves are Edelsbrunner-Harer nerve complexes and the Betti number of a vortex nerve equals k + 2 for a vortex nerve containing k edges attached between a pair of vortex cycles in the nerve.
  127. A Classification of Topological Discrepancies in Additive Manufacturing (2019)

    Morad Behandish, Amir M. Mirzendehdel, Saigopal Nelaturi
    Abstract Additive manufacturing (AM) enables enormous freedom for design of complex structures. However, the process-dependent limitations that result in discrepancies between as-designed and as-manufactured shapes are not fully understood. The tradeoffs between infinitely many different ways to approximate a design by a manufacturable replica are even harder to characterize. To support design for AM (DfAM), one has to quantify local discrepancies introduced by AM processes, identify the detrimental deviations (if any) to the original design intent, and prescribe modifications to the design and/or process parameters to countervail their effects. Our focus in this work will be on topological analysis. There is ample evidence in many applications that preserving local topology (e.g., connectivity of beams in a lattice) is important even when slight geometric deviations can be tolerated. We first present a generic method to characterize local topological discrepancies due to material under-and over-deposition in AM, and show how it captures various types of defects in the as-manufactured structures. We use this information to systematically modify the as-manufactured outcomes within the limitations of available 3D printer resolution(s), which often comes at the expense of introducing more geometric deviations (e.g., thickening a beam to avoid disconnection). We validate the effectiveness of the method on 3D examples with nontrivial topologies such as lattice structures and foams.
  128. Specimen-Based Analysis of Morphology and the Environment in Ecologically Dominant Grasses: The Power of the Herbarium (2019)

    Christine A. McAllister, Michael R. McKain, Mao Li, Bess Bookout, Elizabeth A. Kellogg
    Abstract Herbaria contain a cumulative sample of the world's flora, assembled by thousands of people over centuries. To capitalize on this resource, we conducted a specimen-based analysis of a major clade in the grass tribe Andropogoneae, including the dominant species of the world's grasslands in the genera Andropogon, Schizachyrium, Hyparrhenia and several others. We imaged 186 of the 250 named species of the clade, georeferenced the specimens and extracted climatic variables for each. Using semi- and fully automated image analysis techniques, we extracted spikelet morphological characters and correlated these with environmental variables. We generated chloroplast genome sequences to correct for phylogenetic covariance and here present a new phylogeny for 81 of the species. We confirm and extend earlier studies to show that Andropogon and Schizachyrium are not monophyletic. In addition, we find all morphological and ecological characters are homoplasious but variable among clades. For example, sessile spikelet length is positively correlated with awn length when all accessions are considered, but when separated by clade, the relationship is positive for three sub-clades and negative for three others. Climate variables showed no correlation with morphological variation in the spikelet pair; only very weak effects of temperature and precipitation were detected on macrohair density. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the Anthropocene'.
  129. Rootstock Effects on Scion Phenotypes in a ‘Chambourcin’ Experimental Vineyard (2019)

    Zoë Migicovsky, Zachary N Harris, Laura L Klein, Mao Li, Adam McDermaid, Daniel H Chitwood, Anne Fennell, Laszlo G Kovacs, Misha Kwasniewski, Jason P Londo, Qin Ma, Allison J Miller
    Abstract Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we used the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock–scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown ungrafted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across 2 years and three different irrigation treatments. We found that a significant amount of the variation in leaf shape could be explained by the interaction between rootstock and irrigation. For ion concentrations, the primary source of variation identified was the position of a leaf in a shoot, although rootstock and rootstock by irrigation interaction also explained a significant amount of variation for most ions. Lastly, we found rootstock-specific patterns of gene expression in grafted plants when compared to ungrafted vines. Thus, our work reveals the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics, and gene expression.
  130. Topology Highlights Mesoscopic Functional Equivalence Between Imagery and Perception: The Case of Hypnotizability (2019)

    Esther Ibáñez-Marcelo, Lisa Campioni, Angkoon Phinyomark, Giovanni Petri, Enrica L. Santarcangelo
    Abstract The functional equivalence (FE) between imagery and perception or motion has been proposed on the basis of neuroimaging evidence of large spatially overlapping activations between real and imagined sensori-motor conditions. However, similar local activation patterns do not imply the same mesoscopic integration of brain regions, which can be described by tools from Topological Data Analysis (TDA). On the basis of behavioral findings, stronger FE has been hypothesized in the individuals with high scores of hypnotizability scores (highs) with respect to low hypnotizable participants (lows) who differ between each other in the proneness to modify memory, perception and behavior according to specific imaginative suggestions. Here we present the first EEG evidence of stronger FE in highs. In fact, persistent homology shows that the highs EEG topological asset during real and imagined sensory conditions is significantly more similar than the lows. As a corollary finding, persistent homology shows lower restructuring of the EEG asset in highs than in lows during both sensory and imagery tasks with respect to basal conditions. Present findings support the view that greater embodiment of mental images may be responsible for the highs greater proneness to respond to sensori-motor suggestions and to report involuntariness in action. In addition, findings indicate hypnotizability-related sensory and cognitive information processing and suggest that the psycho-physiological trait of hypnotizability may modulate more than one aspect of the everyday life.
  131. Learning Representations of Persistence Barcodes (2019)

    Christoph D. Hofer, Roland Kwitt, Marc Niethammer
    Abstract We consider the problem of supervised learning with summary representations of topological features in data. In particular, we focus on persistent homology, the prevalent tool used in topological data analysis. As the summary representations, referred to as barcodes or persistence diagrams, come in the unusual format of multi sets, equipped with computationally expensive metrics, they can not readily be processed with conventional learning techniques. While different approaches to address this problem have been proposed, either in the context of kernel-based learning, or via carefully designed vectorization techniques, it remains an open problem how to leverage advances in representation learning via deep neural networks. Appropriately handling topological summaries as input to neural networks would address the disadvantage of previous strategies which handle this type of data in a task-agnostic manner. In particular, we propose an approach that is designed to learn a task-specific representation of barcodes. In other words, we aim to learn a representation that adapts to the learning problem while, at the same time, preserving theoretical properties (such as stability). This is done by projecting barcodes into a finite dimensional vector space using a collection of parametrized functionals, so called structure elements, for which we provide a generic construction scheme. A theoretical analysis of this approach reveals sufficient conditions to preserve stability, and also shows that different choices of structure elements lead to great differences with respect to their suitability for numerical optimization. When implemented as a neural network input layer, our approach demonstrates compelling performance on various types of problems, including graph classification and eigenvalue prediction, the classification of 2D/3D object shapes and recognizing activities from EEG signals.
  132. Fast Estimation of Recombination Rates Using Topological Data Analysis (2019)

    Devon P. Humphreys, Melissa R. McGuirl, Michael Miyagi, Andrew J. Blumberg
    Abstract Accurate estimation of recombination rates is critical for studying the origins and maintenance of genetic diversity. Because the inference of recombination rates under a full evolutionary model is computationally expensive, we developed an alternative approach using topological data analysis (TDA) on genome sequences. We find that this method can analyze datasets larger than what can be handled by any existing recombination inference software, and has accuracy comparable to commonly used model-based methods with significantly less processing time. Previous TDA methods used information contained solely in the first Betti number (\textlessimg class="highwire-embed" alt="Embedded Image" src="http://www.genetics.org/sites/default/files/highwire/genetics/211/4/1191/embed/mml-math-1.gif"/\textgreater) of a set of genomes, which aims to capture the number of loops that can be detected within a genealogy. These explorations have proven difficult to connect to the theory of the underlying biological process of recombination, and, consequently, have unpredictable behavior under perturbations of the data. We introduce a new topological feature, which we call ψ, with a natural connection to coalescent models, and present novel arguments relating \textlessimg class="highwire-embed" alt="Embedded Image" src="http://www.genetics.org/sites/default/files/highwire/genetics/211/4/1191/embed/mml-math-2.gif"/\textgreater to population genetic models. Using simulations, we show that ψ and \textlessimg class="highwire-embed" alt="Embedded Image" src="http://www.genetics.org/sites/default/files/highwire/genetics/211/4/1191/embed/mml-math-3.gif"/\textgreater are differentially affected by missing data, and package our approach as TREE (Topological Recombination Estimator). TREE’s efficiency and accuracy make it well suited as a first-pass estimator of recombination rate heterogeneity or hotspots throughout the genome. Our work empirically and theoretically justifies the use of topological statistics as summaries of genome sequences and describes a new, unintuitive relationship between topological features of the distribution of sequence data and the footprint of recombination on genomes.
  133. ChainNet: Learning on Blockchain Graphs With Topological Features (2019)

    N. C. Abay, C. G. Akcora, Y. R. Gel, M. Kantarcioglu, U. D. Islambekov, Y. Tian, B. Thuraisingham
    Abstract The following topics are dealt with: learning (artificial intelligence); graph theory; neural nets; pattern classification; data mining; feature extraction; recommender systems; pattern clustering; social networking (online); optimisation.
  134. Topological Machine Learning With Persistence Indicator Functions (2019)

    Bastian Rieck, Filip Sadlo, Heike Leitte
    Abstract Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.
  135. Hyperparameter Optimization of Topological Features for Machine Learning Applications (2019)

    Francis Motta, Christopher Tralie, Rossella Bedini, Fabiano Bini, Gilberto Bini, Hamed Eramian, Marcio Gameiro, Steve Haase, Hugh Haddox, John Harer, Nick Leiby, Franco Marinozzi, Scott Novotney, Gabe Rocklin, Jed Singer, Devin Strickland, Matt Vaughn
    Abstract This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.
  136. Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background (2019)

    Pratyush Pranav, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J. T. Jones, Armin Schwartzman, Hubert Wagner, Rien van de Weygaert
    Abstract We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the \textlessi\textgreaterPlanck\textlessi/\textgreater satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊\textlesssup\textgreater2\textlesssup/\textgreater is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric \textlessi\textgreaterχ\textlessi/\textgreater\textlesssup\textgreater2\textlesssup/\textgreater-test shows differences between observations and simulations, yielding \textlessi\textgreaterp\textlessi/\textgreater-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3\textlessi\textgreaterσ\textlessi/\textgreater sporadically at these scales. The highest observed deviation between the observations and simulations for \textlessi\textgreaterb\textlessi/\textgreater\textlesssub\textgreater0\textlesssub/\textgreater and \textlessi\textgreaterb\textlessi/\textgreater\textlesssub\textgreater1\textlesssub/\textgreater is approximately between 3\textlessi\textgreaterσ\textlessi/\textgreater and 4\textlessi\textgreaterσ\textlessi/\textgreater at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by \textlessi\textgreaterPlanck\textlessi/\textgreater’s predecessor, the \textlessi\textgreaterWilkinson\textlessi/\textgreater Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of \textlessi\textgreaterPlanck\textlessi/\textgreater and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.
  137. Four-Dimensional Observation of Ductile Fracture in Sintered Iron Using Synchrotron X-Ray Laminography (2019)

    Y. Ozaki, Y. Mugita, M. Aramaki, O. Furukimi, S. Oue, F. Jiang, T. Tsuji, A. Takeuchi, M. Uesugi, K. Ashizuka
    Abstract Synchrotron X-ray laminography was used to examine the time-dependent evolution of the three-dimensional (3D) morphology of micropores in sintered iron during the tensile test. 3D snapshots showed that the networked open pores grow wider than 20 µm along the tensile direction, resulting in the internal necking of the specimen. Subsequently, these pores initiated the cracks perpendicular to the tensile direction by coalescing with the surrounding pre-existing microvoids or with the secondary-generated voids immediately before fracture. Topological analysis of the barycentric positions of these microvoids showed that they form the two-dimensional networks within the ∼20 µm of radius area. These observations strongly indicate that the microvoid coalescence could occur on shear planes formed close to the enlarged open pores or between closed pores by strain accumulation and play an important role in the crack initiation.
  138. A Topological Data Analysis Based Classification Method for Multiple Measurements (2019)

    Henri Riihimäki, Wojciech Chachólski, Jakob Theorell, Jan Hillert, Ryan Ramanujam
    Abstract \textlessh3\textgreaterAbstract\textless/h3\textgreater \textlessh3\textgreaterBackground\textless/h3\textgreater \textlessp\textgreaterMachine learning models for repeated measurements are limited. Using topological data analysis (TDA), we present a classifier for repeated measurements which samples from the data space and builds a network graph based on the data topology. When applying this to two case studies, accuracy exceeds alternative models with additional benefits such as reporting data subsets with high purity along with feature values.\textless/p\textgreater\textlessh3\textgreaterResults\textless/h3\textgreater \textlessp\textgreaterFor 300 examples of 3 tree species, the accuracy reached 80% after 30 datapoints, which was improved to 90% after increased sampling to 400 datapoints. Using data from 100 examples of each of 6 point processes, the classifier achieved 96.8% accuracy. In both datasets, the TDA classifier outperformed an alternative model.\textless/p\textgreater\textlessh3\textgreaterConclusions\textless/h3\textgreater \textlessp\textgreaterThis algorithm and software can be beneficial for repeated measurement data common in biological sciences, as both an accurate classifier and a feature selection tool.\textless/p\textgreater
  139. The Accumulated Persistence Function, a New Useful Functional Summary Statistic for Topological Data Analysis, With a View to Brain Artery Trees and Spatial Point Process Applications (2019)

    C.A.N. Biscio, J. Møller
    Abstract We start with a simple introduction to topological data analysis where the most popular tool is called a persistence diagram. Briefly, a persistence diagram is a multiset of points in the plane describing the persistence of topological features of a compact set when a scale parameter varies. Since statistical methods are difficult to apply directly on persistence diagrams, various alternative functional summary statistics have been suggested, but either they do not contain the full information of the persistence diagram or they are two-dimensional functions. We suggest a new functional summary statistic that is one-dimensional and hence easier to handle, and which under mild conditions contains the full information of the persistence diagram. Its usefulness is illustrated in statistical settings concerned with point clouds and brain artery trees. The supplementary materials include additional methods and examples, technical details, and the R code used for all examples. © 2019, © 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
  140. Molecular Phenotyping Using Networks, Diffusion, and Topology: Soft Tissue Sarcoma (2019)

    James C. Mathews, Maryam Pouryahya, Caroline Moosmüller, Yannis G. Kevrekidis, Joseph O. Deasy, Allen Tannenbaum
    Abstract Many biological datasets are high-dimensional yet manifest an underlying order. In this paper, we describe an unsupervised data analysis methodology that operates in the setting of a multivariate dataset and a network which expresses influence between the variables of the given set. The technique involves network geometry employing the Wasserstein distance, global spectral analysis in the form of diffusion maps, and topological data analysis using the Mapper algorithm. The prototypical application is to gene expression profiles obtained from RNA-Seq experiments on a collection of tissue samples, considering only genes whose protein products participate in a known pathway or network of interest. Employing the technique, we discern several coherent states or signatures displayed by the gene expression profiles of the sarcomas in the Cancer Genome Atlas along the TP53 (p53) signaling network. The signatures substantially recover the leiomyosarcoma, dedifferentiated liposarcoma (DDLPS), and synovial sarcoma histological subtype diagnoses, and they also include a new signature defined by activation and inactivation of about a dozen genes, including activation of serine endopeptidase inhibitor SERPINE1 and inactivation of TP53-family tumor suppressor gene TP73.
  141. Signal Enrichment With Strain-Level Resolution in Metagenomes Using Topological Data Analysis (2019)

    Aldo Guzmán-Sáenz, Niina Haiminen, Saugata Basu, Laxmi Parida
    Abstract Background A metagenome is a collection of genomes, usually in a micro-environment, and sequencing a metagenomic sample en masse is a powerful means for investigating the community of the constituent microorganisms. One of the challenges is in distinguishing between similar organisms due to rampant multiple possible assignments of sequencing reads, resulting in false positive identifications. We map the problem to a topological data analysis (TDA) framework that extracts information from the geometric structure of data. Here the structure is defined by multi-way relationships between the sequencing reads using a reference database. Results Based primarily on the patterns of co-mapping of the reads to multiple organisms in the reference database, we use two models: one a subcomplex of a Barycentric subdivision complex and the other a Čech complex. The Barycentric subcomplex allows a natural mapping of the reads along with their coverage of organisms while the Čech complex takes simply the number of reads into account to map the problem to homology computation. Using simulated genome mixtures we show not just enrichment of signal but also microbe identification with strain-level resolution. Conclusions In particular, in the most refractory of cases where alternative algorithms that exploit unique reads (i.e., mapped to unique organisms) fail, we show that the TDA approach continues to show consistent performance. The Čech model that uses less information is equally effective, suggesting that even partial information when augmented with the appropriate structure is quite powerful.
  142. The Importance of the Whole: Topological Data Analysis for the Network Neuroscientist (2019)

    Ann E. Sizemore, Jennifer E. Phillips-Cremins, Robert Ghrist, Danielle S. Bassett
    Abstract Data analysis techniques from network science have fundamentally improved our understanding of neural systems and the complex behaviors that they support. Yet the restriction of network techniques to the study of pairwise interactions prevents us from taking into account intrinsic topological features such as cavities that may be crucial for system function. To detect and quantify these topological features, we must turn to algebro-topological methods that encode data as a simplicial complex built from sets of interacting nodes called simplices. We then use the relations between simplices to expose cavities within the complex, thereby summarizing its topological features. Here we provide an introduction to persistent homology, a fundamental method from applied topology that builds a global descriptor of system structure by chronicling the evolution of cavities as we move through a combinatorial object such as a weighted network. We detail the mathematics and perform demonstrative calculations on the mouse structural connectome, synapses in C. elegans, and genomic interaction data. Finally, we suggest avenues for future work and highlight new advances in mathematics ready for use in neural systems., For the network neuroscientist, this exposition aims to communicate both the mathematics and the advantages of using tools from applied topology for the study of neural systems. Using data from the mouse connectome, electrical and chemical synapses in C. elegans, and chromatin interaction data, we offer example computations and applications to further demonstrate the power of topological data analysis in neuroscience. Finally, we expose the reader to novel developments in applied topology and relate these developments to current questions and methodological difficulties in network neuroscience.
  143. Understanding Diffraction Patterns of Glassy, Liquid and Amorphous Materials via Persistent Homology Analyses (2019)

    Yohei Onodera, Shinji Kohara, Shuta Tahara, Atsunobu Masuno, Hiroyuki Inoue, Motoki Shiga, Akihiko Hirata, Koichi Tsuchiya, Yasuaki Hiraoka, Ippei Obayashi, Koji Ohara, Akitoshi Mizuno, Osami Sakata
    Abstract The structure of glassy, liquid, and amorphous materials is still not well understood, due to the insufficient structural information from diffraction data. In this article, attempts are made to understand the origin of diffraction peaks, particularly of the first sharp diffraction peak (FSDP, Q1), the principal peak (PP, Q2), and the third peak (Q3), observed in the measured diffraction patterns of disordered materials whose structure contains tetrahedral motifs. It is confirmed that the FSDP (Q1) is not a signature of the formation of a network, because an FSDP is observed in tetrahedral molecular liquids. It is found that the PP (Q2) reflects orientational correlations of tetrahedra. Q3, that can be observed in all disordered materials, even in common liquid metals, stems from simple pair correlations. Moreover, information on the topology of disordered materials was revealed by utilizing persistent homology analyses. The persistence diagram of silica (SiO2) glass suggests that the shape of rings in the glass is similar not only to those in the crystalline phase with comparable density (α-cristobalite), but also to rings present in crystalline phases with higher density (α-quartz and coesite); this is thought to be the signature of disorder. Furthermore, we have succeeded in revealing the differences, in terms of persistent homology, between tetrahedral networks and tetrahedral molecular liquids, and the difference/similarity between liquid and amorphous (glassy) states. Our series of analyses demonstrated that a combination of diffraction data and persistent homology analyses is a useful tool for allowing us to uncover structural features hidden in halo pattern of disordered materials.
  144. Spatial Embedding Imposes Constraints on Neuronal Network Architectures (2018)

    Jennifer Stiso, Danielle S. Bassett
    Abstract Recent progress towards understanding circuit function has capitalized on tools from network science to parsimoniously describe the spatiotemporal architecture of neural systems. Such tools often address systems topology divorced from its physical instantiation. Nevertheless, for embedded systems such as the brain, physical laws directly constrain the processes of network growth, development, and function. We review here the rules imposed by the space and volume of the brain on the development of neuronal networks, and show that these rules give rise to a specific set of complex topologies. These rules also affect the repertoire of neural dynamics that can emerge from the system, and thereby inform our understanding of network dysfunction in disease. We close by discussing new tools and models to delineate the effects of spatial embedding.
  145. Improving Health Care Management Through Persistent Homology of Time-Varying Variability of Emergency Department Patient Flow (2018)

    Mael Dugast, Guillaume Bouleux, Olivier Mory, Eric Marcon
    Abstract Excessive admissions at the Emergency Department (ED) is a phenomenon very closely linked to the propagation of viruses. It is a cause of overcrowding for EDs and a public health problem. The aim of this work is to give EDs’ leaders more time for decision making during this period. Based on the admissions time series associated with specific clinical diagnoses, we will first perform a Detrended Fluctuation Analysis (DFA) to obtain the corresponding variability time series. Next, we will embed this time series on a manifold to obtain a point cloud representation and use Topological Data Analysis (TDA) through persistent homology technic to propose two early realtime indicators. One is the early indicator of abnormal arrivals at the ED whereas the second gives the information on the time index of the maximum number of arrivals. The performance of the detectors is parameter dependent and it can evolve each year. That is why we also propose to solve a bi-objective optimization problem to track the variations of this parameter.
  146. Homological Analysis of Multi-Qubit Entanglement (2018)

    Alessandra di Pierro, Stefano Mancini, Laleh Memarzadeh, Riccardo Mengoni
    Abstract We propose the usage of persistent homologies to characterize multipartite entanglement. On a multi-qubit data set we introduce metric-like measures defined in terms of bipartite entanglement and then we derive barcodes. We show that, depending on the distance, they are able to produce different classifications. In one case, it is possible to obtain the standard separability classes. In the other case, a new classification of entangled states of three and four qubits is provided.
  147. Topological Edge Modes by Smart Patterning (2018)

    David J. Apigo, Kai Qian, Camelia Prodan, Emil Prodan
    Abstract We study identical coupled mechanical resonators whose collective dynamics are fully determined by the patterns in which they are arranged. In this work, we call a system topological if (1) boundary resonant modes fully fill all existing spectral gaps whenever the system is halved, and (2) if the boundary spectrum cannot be removed or gapped by any boundary condition. We demonstrate that such topological characteristics can be induced solely through patterning, in a manner entirely independent of the structure of the resonators and the details of the couplings. The existence of such patterns is proven using K theory and exemplified using an experimental platform based on magnetically coupled spinners. Topological metamaterials built on these principles can be easily engineered at any scale, providing a practical platform for applications and devices.
  148. Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters (2018)

    Andreas Hofmann, Matthias Krufczik, Dieter W. Heermann, Michael Hausmann
    Abstract DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.
  149. Improved Understanding of Aqueous Solubility Modeling Through Topological Data Analysis (2018)

    Mariam Pirashvili, Lee Steinberg, Francisco Belchi Guillamon, Mahesan Niranjan, Jeremy G. Frey, Jacek Brodzki
    Abstract Topological data analysis is a family of recent mathematical techniques seeking to understand the ‘shape’ of data, and has been used to understand the structure of the descriptor space produced from a standard chemical informatics software from the point of view of solubility. We have used the mapper algorithm, a TDA method that creates low-dimensional representations of data, to create a network visualization of the solubility space. While descriptors with clear chemical implications are prominent features in this space, reflecting their importance to the chemical properties, an unexpected and interesting correlation between chlorine content and rings and their implication for solubility prediction is revealed. A parallel representation of the chemical space was generated using persistent homology applied to molecular graphs. Links between this chemical space and the descriptor space were shown to be in agreement with chemical heuristics. The use of persistent homology on molecular graphs, extended by the use of norms on the associated persistence landscapes allow the conversion of discrete shape descriptors to continuous ones, and a perspective of the application of these descriptors to quantitative structure property relations is presented.
  150. Chatter Classification in Turning Using Machine Learning and Topological Data Analysis (2018)

    Firas A. Khasawneh, Elizabeth Munch, Jose A. Perea
    Abstract Chatter identification and detection in machining processes has been an active area of research in the past two decades. Part of the challenge in studying chatter is that machining equations that describe its occurrence are often nonlinear delay differential equations. The majority of the available tools for chatter identification rely on defining a metric that captures the characteristics of chatter, and a threshold that signals its occurrence. The difficulty in choosing these parameters can be somewhat alleviated by utilizing machine learning techniques. However, even with a successful classification algorithm, the transferability of typical machine learning methods from one data set to another remains very limited. In this paper we combine supervised machine learning with Topological Data Analysis (TDA) to obtain a descriptor of the process which can detect chatter. The features we use are derived from the persistence diagram of an attractor reconstructed from the time series via Takens embedding. We test the approach using deterministic and stochastic turning models, where the stochasticity is introduced via the cutting coefficient term. Our results show a 97% successful classification rate on the deterministic model labeled by the stability diagram obtained using the spectral element method. The features gleaned from the deterministic model are then utilized for characterization of chatter in a stochastic turning model where there are very limited analysis methods.
  151. Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)

    Woojin Kim, Facundo Memoli
    Abstract When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.
  152. Towards a New Approach to Reveal Dynamical Organization of the Brain Using Topological Data Analysis (2018)

    Manish Saggar, Olaf Sporns, Javier Gonzalez-Castillo, Peter A. Bandettini, Gunnar Carlsson, Gary Glover, Allan L. Reiss
    Abstract Approaches describing how the brain changes to accomplish cognitive tasks tend to rely on collapsed data. Here, authors present a new approach that maintains high dimensionality and use it to describe individual differences in how brain activity is represented and organized across different cognitive tasks.
  153. Possible Clinical Use of Big Data: Personal Brain Connectomics (2018)

    Dong Soo Lee
    Abstract The biggest data is brain imaging data, which waited for clinical use during the last three decades. Topographic data interpretation prevailed for the first two decades, and only during the last decade, connectivity or connectomics data began to be analyzed properly. Owing to topological data interpretation and timely introduction of likelihood method based on hierarchical generalized linear model, we now foresee the clinical use of personal connectomics for classification and prediction of disease prognosis for brain diseases without any clue by currently available diagnostic methods.
  154. Mind the Gap: A Study in Global Development Through Persistent Homology (2018)

    Andrew Banman, Lori Ziegelmeier
    Abstract The Gapminder project set out to use statistics to dispel simplistic notions about global development. In the same spirit, we use persistent homology, a technique from computational algebraic topology, to explore the relationship between country development and geography. For each country, four indicators, gross domestic product per capita; average life expectancy; infant mortality; and gross national income per capita, were used to quantify the development. Two analyses were performed. The first considers clusters of the countries based on these indicators, and the second uncovers cycles in the data when combined with geographic border structure. Our analysis is a multi-scale approach that reveals similarities and connections among countries at a variety of levels. We discover localized development patterns that are invisible in standard statistical methods.
  155. Geometry and Topology of the Space of Sonar Target Echos (2018)

    Michael Robinson, Sean Fennell, Brian DiZio, Jennifer Dumiak
    Abstract Successful synthetic aperture sonar target classification depends on the “shape” of the scatterers within a target signature. This article presents a workflow that computes a target-to-target distance from persistence diagrams, since the “shape” of a signature informs its persistence diagram in a structure-preserving way. The target-to-target distances derived from persistence diagrams compare favorably against those derived from spectral features and have the advantage of being substantially more compact. While spectral features produce clusters associated to each target type that are reasonably dense and well formed, the clusters are not well-separated from one another. In rather dramatic contrast, a distance derived from persistence diagrams results in highly separated clusters at the expense of some misclassification of outliers.
  156. Lung Topology Characteristics in Patients With Chronic Obstructive Pulmonary Disease (2018)

    Francisco Belchi, Mariam Pirashvili, Joy Conway, Michael Bennett, Ratko Djukanovic, Jacek Brodzki
    Abstract Quantitative features that can currently be obtained from medical imaging do not provide a complete picture of Chronic Obstructive Pulmonary Disease (COPD). In this paper, we introduce a novel analytical tool based on persistent homology that extracts quantitative features from chest CT scans to describe the geometric structure of the airways inside the lungs. We show that these new radiomic features stratify COPD patients in agreement with the GOLD guidelines for COPD and can distinguish between inspiratory and expiratory scans. These CT measurements are very different to those currently in use and we demonstrate that they convey significant medical information. The results of this study are a proof of concept that topological methods can enhance the standard methodology to create a finer classification of COPD and increase the possibilities of more personalized treatment.
  157. Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology (2018)

    Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul Rosen
    Abstract Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.
  158. (Quasi)Periodicity Quantification in Video Data, Using Topology (2018)

    Christopher J. Tralie, Jose A. Perea
    Abstract This work introduces a novel framework for quantifying the presence and strength of recurrent dynamics in video data. Specifically, we provide continuous measures of periodicity (perfect repetition) and quasiperiodicity (superposition of periodic modes with noncommensurate periods), in a way which does not require segmentation, training, object tracking, or 1-dimensional surrogate signals. Our methodology operates directly on video data. The approach combines ideas from nonlinear time series analysis (delay embeddings) and computational topology (persistent homology) by translating the problem of finding recurrent dynamics in video data into the problem of determining the circularity or toroidality of an associated geometric space. Through extensive testing, we show the robustness of our scores with respect to several noise models/levels; we show that our periodicity score is superior to other methods when compared to human-generated periodicity rankings; and furthermore, we show that our quasiperiodicity score clearly indicates the presence of biphonation in videos of vibrating vocal folds, which has never before been accomplished quantitatively end to end.
  159. Topological Signature of 19th Century Novelists: Persistent Homology in Text Mining (2018)

    Shafie Gholizadeh, Armin Seyeditabari, Wlodek Zadrozny
    Abstract Topological Data Analysis (TDA) refers to a collection of methods that find the structure of shapes in data. Although recently, TDA methods have been used in many areas of data mining, it has not been widely applied to text mining tasks. In most text processing algorithms, the order in which different entities appear or co-appear is being lost. Assuming these lost orders are informative features of the data, TDA may play a significant role in the resulted gap on text processing state of the art. Once provided, the topology of different entities through a textual document may reveal some additive information regarding the document that is not reflected in any other features from conventional text processing methods. In this paper, we introduce a novel approach that hires TDA in text processing in order to capture and use the topology of different same-type entities in textual documents. First, we will show how to extract some topological signatures in the text using persistent homology-i.e., a TDA tool that captures topological signature of data cloud. Then we will show how to utilize these signatures for text classification.
  160. RGB Image-Based Data Analysis via Discrete Morse Theory and Persistent Homology (2018)

    Chuan Du, Christopher Szul, Adarsh Manawa, Nima Rasekh, Rosemary Guzman, Ruth Davidson
    Abstract Understanding and comparing images for the purposes of data analysis is currently a very computationally demanding task. A group at Australian National University (ANU) recently developed open-source code that can detect fundamental topological features of a grayscale image in a computationally feasible manner. This is made possible by the fact that computers store grayscale images as cubical cellular complexes. These complexes can be studied using the techniques of discrete Morse theory. We expand the functionality of the ANU code by introducing methods and software for analyzing images encoded in red, green, and blue (RGB), because this image encoding is very popular for publicly available data. Our methods allow the extraction of key topological information from RGB images via informative persistence diagrams by introducing novel methods for transforming RGB-to-grayscale. This paradigm allows us to perform data analysis directly on RGB images representing water scarcity variability as well as crime variability. We introduce software enabling a a user to predict future image properties, towards the eventual aim of more rapid image-based data behavior prediction.
  161. When Remote Sensing Meets Topological Data Analysis (2018)

    Ludovic Duponchel
    Abstract Author Summary: Hyperspectral remote sensing plays an increasingly important role in many scientific domains and everyday life problems. Indeed, this imaging concept ends up in applications as varied as catching tax-evaders red-handed by locating new construction and building alterations, searching for aircraft and saving lives after fatal crashes, detecting oil spills for marine life and environmental preservation, spying on enemies with reconnaissance satellites, watching algae grow as an indicator of environmental health, forecasting weather to warn about natural disasters and much more. From an instrumental point of view, we can say that the actual spectrometers have rather good characteristics, even if we can always increase spatial resolution and spectral range. In order to extract ever more information from such experiments and develop new applications, we must, therefore, propose multivariate data analysis tools able to capture the shape of data sets and their specific features. Nevertheless, actual methods often impose a data model which implicitly defines the geometry of the data set. The aim of the paper is thus to introduce the concept of topological data analysis in the framework of remote sensing, making no assumptions about the global shape of the data set, but also allowing the capture of its local features.
  162. Topological Data Analysis for True Step Detection in Periodic Piecewise Constant Signals (2018)

    Firas A. Khasawneh, Elizabeth Munch
    Abstract This paper introduces a simple yet powerful approach based on topological data analysis for detecting true steps in a periodic, piecewise constant (PWC) signal. The signal is a two-state square wave with randomly varying in-between-pulse spacing, subject to spurious steps at the rising or falling edges which we call digital ringing. We use persistent homology to derive mathematical guarantees for the resulting change detection which enables accurate identification and counting of the true pulses. The approach is tested using both synthetic and experimental data obtained using an engine lathe instrumented with a laser tachometer. The described algorithm enables accurate and automatic calculations of the spindle speed without any choice of parameters. The results are compared with the frequency and sequency methods of the Fourier and Walsh–Hadamard transforms, respectively. Both our approach and the Fourier analysis yield comparable results for pulses with regular spacing and digital ringing while the latter causes large errors using the Walsh–Hadamard method. Further, the described approach significantly outperforms the frequency/sequency analyses when the spacing between the peaks is varied. We discuss generalizing the approach to higher dimensional PWC signals, although using this extension remains an interesting question for future research.
  163. Image-Based Phenotyping for Identification of QTL Determining Fruit Shape and Size in American Cranberry (Vaccinium Macrocarpon L.) (2018)

    Luis Diaz-Garcia, Giovanny Covarrubias-Pazaran, Brandon Schlautman, Edward Grygleski, Juan Zalapa
    Abstract Image-based phenotyping methodologies are powerful tools to determine quality parameters for fruit breeders and processors. The fruit size and shape of American cranberry (Vaccinium macrocarpon L.) are particularly important characteristics that determine the harvests’ processing value and potential end-use products (e.g., juice vs. sweetened dried cranberries). However, cranberry fruit size and shape attributes can be difficult and time consuming for breeders and processors to measure, especially when relying on manual measurements and visual ratings. Therefore, in this study, we implemented image-based phenotyping techniques for gathering data regarding basic cranberry fruit parameters such as length, width, length-to-width ratio, and eccentricity. Additionally, we applied a persistent homology algorithm to better characterize complex shape parameters. Using this high-throughput artificial vision approach, we characterized fruit from 351 progeny from a full-sib cranberry population over three field seasons. Using a covariate analysis to maximize the identification of well-supported quantitative trait loci (QTL), we found 252 single QTL in a 3-year period for cranberry fruit size and shape descriptors from which 20% were consistently found in all years. The present study highlights the potential for the identified QTL and the image-based methods to serve as a basis for future explorations of the genetic architecture of fruit size and shape in cranberry and other fruit crops.
  164. Topological Data Analysis for the Characterization of Atomic Scale Morphology From Atom Probe Tomography Images (2018)

    Tianmu Zhang, Scott R. Broderick, Krishna Rajan
    Abstract Atom probe tomography (APT) represents a revolutionary characterization tool for materials that combine atomic imaging with a time-of-flight (TOF) mass spectrometer to provide direct space three-dimensional, atomic scale resolution images of materials with the chemical identities of hundreds of millions of atoms. It involves the controlled removal of atoms from a specimen’s surface by field evaporation and then sequentially analyzing them with a position sensitive detector and TOF mass spectrometer. A paradox in APT is that while on the one hand, it provides an unprecedented level of imaging resolution in three dimensions, it is very difficult to obtain an accurate perspective of morphology or shape outlined by atoms of similar chemistry and microstructure. The origins of this problem are numerous, including incomplete detection of atoms and the complexity of the evaporation fields of atoms at or near interfaces. Hence, unlike scattering techniques such as electron microscopy, interfaces appear diffused, not sharp. This, in turn, makes it challenging to visualize and quantitatively interpret the microstructure at the “meso” scale, where one is interested in the shape and form of the interfaces and their associated chemical gradients. It is here that the application of informatics at the nanoscale and statistical learning methods plays a critical role in both defining the level of uncertainty and helping to make quantitative, statistically objective interpretations where heuristics often dominate. In this chapter, we show how the tools of Topological Data Analysis provide a new and powerful tool in the field of nanoinformatics for materials characterization.
  165. Cliques and Cavities in the Human Connectome (2018)

    Ann E. Sizemore, Chad Giusti, Ari Kahn, Jean M. Vettel, Richard F. Betzel, Danielle S. Bassett
    Abstract Encoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing. Finding such structures necessitates that we move from considering exclusively pairwise interactions to capturing higher order relations, concepts naturally expressed in the language of algebraic topology. These tools can be used to study mesoscale network structures that arise from the arrangement of densely connected substructures called cliques in otherwise sparsely connected brain networks. We detect cliques (all-to-all connected sets of brain regions) in the average structural connectomes of 8 healthy adults scanned in triplicate and discover the presence of more large cliques than expected in null networks constructed via wiring minimization, providing architecture through which brain network can perform rapid, local processing. We then locate topological cavities of different dimensions, around which information may flow in either diverging or converging patterns. These cavities exist consistently across subjects, differ from those observed in null model networks, and – importantly – link regions of early and late evolutionary origin in long loops, underscoring their unique role in controlling brain function. These results offer a first demonstration that techniques from algebraic topology offer a novel perspective on structural connectomics, highlighting loop-like paths as crucial features in the human brain’s structural architecture.
  166. The Architecture of the Endoplasmic Reticulum Is Regulated by the Reversible Lipid Modification of the Shaping Protein CLIMP-63 (2018)

    Patrick A. Sandoz, Robin A. Denhardt-Eriksson, Laurence Abrami, Luciano Abriata, Gard Spreemann, Catherine Maclachlan, Sylvia Ho, Béatrice Kunz, Kathryn Hess, Graham Knott, Vassily Hatzimanikatis, F. Gisou van der Goot
    Abstract \textlessh3\textgreaterAbstract\textless/h3\textgreater \textlessp\textgreaterThe endoplasmic reticulum (ER) has a complex morphology generated and maintained by membrane-shaping proteins and membrane energy minimization, though not much is known about how it is regulated. The architecture of this intracellular organelle is balanced between large, thin sheets that are densely packed in the perinuclear region and a connected network of branched, elongated tubules that extend throughout the cytoplasm. Sheet formation is known to involve the cytoskeleton-linking membrane protein 63 (CLIMP-63), though its regulation and the depth of its involvement remain unknown. Here we show that the post-translational modification of CLIMP-63 by the palmitoyltransferase ZDHHC6 controls the relative distribution of CLIMP-63 between the ER and the plasma membrane. By combining data-driven mathematical modeling, predictions, and experimental validation, we found that the attachment of a medium chain fatty acid, so-called S-palmitoylation, to the unique CLIMP-63 cytoplasmic cysteine residue drastically reduces its turnover rate, and thereby controls its abundance. Light microscopy and focused ion beam electron microcopy further revealed that enhanced CLIMP-63 palmitoylation leads to strong ER-sheet proliferation. Altogether, we show that ZDHHC6-mediated S-palmitoylation regulates the cellular localization of CLIMP-63, the morphology of the ER, and the interconversion of ER structural elements in mammalian cells through its action on the CLIMP-63 protein.\textless/p\textgreater\textlessh3\textgreaterSignificance Statement\textless/h3\textgreater \textlessp\textgreaterEukaryotic cells subcompartmentalize their various functions into organelles, the shape of each being specific and necessary for its proper role. However, how these shapes are generated and controlled is poorly understood. The endoplasmic reticulum is the largest membrane-bound intracellular compartment, accounting for more than 50% of all cellular membranes. We found that the shape and quantity of its sheet-like structures are controlled by a specific protein, cytoskeleton-linking membrane protein 63, through the acquisition of a lipid chain attached by an enzyme called ZDHHC6. Thus, by modifying the ZDHHC6 amounts, a cell can control the shape of its ER. The modeling and prediction technique used herein also provides a method for studying the interconnected function of other post-translational modifications in organelles.\textless/p\textgreater
  167. Persistent Homology of Time-Dependent Functional Networks Constructed From Coupled Time Series (2017)

    Bernadette J. Stolz, Heather A. Harrington, Mason A. Porter
    Abstract We use topological data analysis to study “functional networks” that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging data that were acquired from human subjects during a simple motor-learning task in which subjects were monitored for three days during a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process.
  168. Topological Data Analysis of Financial Time Series: Landscapes of Crashes (2017)

    Marian Gidea, Yuri Katz
    Abstract We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their \$L\textasciicircump\$-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the \$L\textasciicircump\$-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of \$L\textasciicircump\$-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which goes beyond the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
  169. Constructing Shape Spaces From a Topological Perspective (2017)

    Christoph Hofer, Roland Kwitt, Marc Niethammer, Yvonne Höller, Eugen Trinka, Andreas Uhl
    Abstract We consider the task of constructing (metric) shape space(s) from a topological perspective. In particular, we present a generic construction scheme and demonstrate how to apply this scheme when shape is interpreted as the differences that remain after factoring out translation, scaling and rotation. This is achieved by leveraging a recently proposed injective functional transform of 2D/3D (binary) objects, based on persistent homology. The resulting shape space is then equipped with a similarity measure that is (1) by design robust to noise and (2) fulfills all metric axioms. From a practical point of view, analyses of object shape can then be carried out directly on segmented objects obtained from some imaging modality without any preprocessing, such as alignment, smoothing, or landmark selection. We demonstrate the utility of the approach on the problem of distinguishing segmented hippocampi from normal controls vs. patients with Alzheimer’s disease in a challenging setup where volume changes are no longer discriminative.
  170. Raw Material Flow Optimization as a Capacitated Vehicle Routing Problem: A Visual Benchmarking Approach for Sustainable Manufacturing (2017)

    Michele Dassisti, Yasamin Eslami, Matin Mohaghegh
    Abstract Optimisation problem concerning material flows, to increase the efficiency while reducing relative resource consumption is one of the most pressing problems today. The focus point of this study is to propose a new visual benchmarking approach to select the best material-flow path from the depot to the production lines, referring to the well-known Capacitated Vehicle Routing Problem (CVRP). An example industrial case study is considered to this aim. Two different solution techniques were adopted (namely Mixed Integer Linear Programming and the Ant Colony Optimization) in searching optimal solutions to the CVRP. The visual benchmarking proposed, based on the persistent homology approach, allowed to support the comparison of the optimal solutions based on the entropy of the output in different scenarios. Finally, based on the non-standard measurements of Crossing Length Percentage (CLP), the visual benchmarking procedure makes it possible to find the most practical and applicable solution to CVRP by considering the visual attractiveness and the quality of the routes.
  171. A Morphometric Analysis of Vegetation Patterns in Dryland Ecosystems (2017)

    Luke Mander, Stefan C. Dekker, Mao Li, Washington Mio, Surangi W. Punyasena, Timothy M. Lenton
    Abstract Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
  172. Congestion Barcodes: Exploring the Topology of Urban Congestion Using Persistent Homology (2017)

    Yu Wu, Gabriel Shindnes, Vaibhav Karve, Derrek Yager, Daniel B. Work, Arnab Chakraborty, Richard B. Sowers
    Abstract This work presents a new method to quantify connectivity in transportation networks. Inspired by the field of topological data analysis, we propose a novel approach to explore the robustness of road network connectivity in the presence of congestion on the roadway. The robustness of the pattern is summarized in a congestion barcode, which can be constructed directly from traffic datasets commonly used for navigation. As an initial demonstration, we illustrate the main technique on a publicly available traffic dataset in a neighborhood in New York City.
  173. Segmentation of Biomedical Images by a Computational Topology Framework (2017)

    Rodrigo Rojas Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Steven, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous
    Abstract The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n2) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n1+ɛ) for ε \textless 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the performance of the proposed approach (accuracy: 94.5%). Further validations are carried out with a publicly available dataset and ground-truth data from the Gland Segmentation in Colon Histology Images Challenge (GlaS) contest. The proposed method is useful for obtaining unsupervised robust initial segmentations that can be further integrated in image/data processing and management pipelines. The development of a fully automated system supporting a human expert provides tangible benefits in the context of clinical decision-making.
  174. Shape Terra: Mechanical Feature Recognition Based on a Persistent Heat Signature (2017)

    Ramy Harik, Yang Shi, Stephen Baek
    Abstract This paper presents a novel approach to recognizing mechanical features through a multiscale persistent heat signature similarity identification technique. First, heat signature is computed using a modified Laplacian in the application of the heat kernel. Regularly, matrices tend to include an indicator to the manifold curvature (the cotangent in our case), but we add a mesh uniformity factor to overcome mesh proportionality and skewness. Second, once heat retention values are computed, we apply persistent homology to extract significant subsets of the global mesh at different time intervals. Subsets are computed based on similarity of heat retention levels and/or retention values. Third, we present a multiscale persistence identification approach where we scan the part at different persistence levels to detect the presence of a feature. Once features are recognized and their geometrical descriptors identified, the next stage in future work will be feature matching.
  175. Pore Configuration Landscape of Granular Crystallization (2017)

    Mohammad Saadatfar, Hiroshi Takeuchi, Vanessa Robins, Nicolas Francois, Yisuaki Hiraoka
    Abstract Emergence and growth of crystalline domains in granular media remains under-explored. Here, the authors analyse tomographic snapshots from partially recrystallized packings of spheres using persistent homology and find agreement with proposed transitions based on continuous deformation of octahedral and tetrahedral voids.
  176. Uncovering Precision Phenotype-Biomarker Associations in Traumatic Brain Injury Using Topological Data Analysis (2017)

    Jessica L. Nielson, Shelly R. Cooper, John K. Yue, Marco D. Sorani, Tomoo Inoue, Esther L. Yuh, Pratik Mukherjee, Tanya C. Petrossian, Jesse Paquette, Pek Y. Lum, Gunnar E. Carlsson, Mary J. Vassar, Hester F. Lingsma, Wayne A. Gordon, Alex B. Valadka, David O. Okonkwo, Geoffrey T. Manley, Adam R. Ferguson, Track-Tbi Investigators
    Abstract Background Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. Trial Registration ClinicalTrials.gov Identifier NCT01565551
  177. Topology of Force Networks in Granular Media Under Impact (2017)

    M. X. Lim, R. P. Behringer
    Abstract We investigate the evolution of the force network in experimental systems of two-dimensional granular materials under impact. We use the first Betti number, , and persistence diagrams, as measures of the topological properties of the force network. We show that the structure of the network has a complex, hysteretic dependence on both the intruder acceleration and the total force response of the granular material. can also distinguish between the nonlinear formation and relaxation of the force network. In addition, using the persistence diagram of the force network, we show that the size of the loops in the force network has a Poisson-like distribution, the characteristic size of which changes over the course of the impact.
  178. Identification of Topological Network Modules in Perturbed Protein Interaction Networks (2017)

    Mihaela E. Sardiu, Joshua M. Gilmore, Brad Groppe, Laurence Florens, Michael P. Washburn
    Abstract Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.
  179. Single-Cell Topological RNA-Seq Analysis Reveals Insights Into Cellular Differentiation and Development (2017)

    Abbas H. Rizvi, Pablo G. Camara, Elena K. Kandror, Thomas J. Roberts, Ira Schieren, Tom Maniatis, Raul Rabadan
    Abstract Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.
  180. Identification of Key Features Using Topological Data Analysis for Accurate Prediction of Manufacturing System Outputs (2017)

    Wei Guo, Ashis G. Banerjee
    Abstract Topological data analysis (TDA) has emerged as one of the most promising approaches to extract insights from high-dimensional data of varying types such as images, point clouds, and meshes, in an unsupervised manner. To the best of our knowledge, here, we provide the first successful application of TDA in the manufacturing systems domain. We apply a widely used TDA method, known as the Mapper algorithm, on two benchmark data sets for chemical process yield prediction and semiconductor wafer fault detection, respectively. The algorithm yields topological networks that capture the intrinsic clusters and connections among the clusters present in the data sets, which are difficult to detect using traditional methods. We select key process variables or features that impact the system outcomes by analyzing the network shapes. We then use predictive models to evaluate the impact of the selected features. Results show that the models achieve at least the same level of high prediction accuracy as with all the process variables, thereby, providing a way to carry out process monitoring and control in a more cost-effective manner.
  181. Persistent Homology Index as a Robust Quantitative Measure of Immunohistochemical Scoring (2017)

    Akihiro Takiyama, Takashi Teramoto, Hiroaki Suzuki, Katsushige Yamashiro, Shinya Tanaka
    Abstract Immunohistochemical data (IHC) plays an important role in clinical practice, and is typically gathered in a semi-quantitative fashion that relies on some degree of visual scoring. However, visual scoring by a pathologist is inherently subjective and manifests both intra-observer and inter-observer variability. In this study, we introduce a novel computer-aided quantification methodology for immunohistochemical scoring that uses the algebraic concept of persistent homology. Using 8 bit grayscale image data derived from 90 specimens of invasive ductal carcinoma of the breast, stained for the replicative marker Ki-67, we computed homology classes. These were then compared to nuclear grades and the Ki-67 labeling indices obtained by visual scoring. Three metrics for IHC staining were newly defined: Persistent Homology Index (PHI), center coordinates of positive and negative groups, and the sum of squares within groups (WSS). This study demonstrates that PHI, a novel index for immunohistochemical labeling using persistent homology, can produce highly similar data to that generated by a pathologist using visual evaluation. The potential benefits associated with our novel technology include both improved quantification and reproducibility. Since our method reflects cellularity and nuclear atypia, it carries a greater quantity of biologic data compared to conventional evaluation using Ki-67.
  182. Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies (2016)

    Sofya Chepushtanova, Michael Kirby, Chris Peterson, Lori Ziegelmeier
    Abstract The existence of characteristic structure, or shape, in complex data sets has been recognized as increasingly important for mathematical data analysis. This realization has motivated the development of new tools such as persistent homology for exploring topological invariants, or features, in large data sets. In this paper, we apply persistent homology to the characterization of gas plumes in time dependent sequences of hyperspectral cubes, i.e. the analysis of 4-way arrays. We investigate hyperspectral movies of Long-Wavelength Infrared data monitoring an experimental release of chemical simulant into the air. Our approach models regions of interest within the hyperspectral data cubes as points on the real Grassmann manifold Gk,ï źn whose points parameterize the k-dimensional subspaces of \$\$\mathbb \R\\textasciicircumn\$\$Rn, contrasting our approach with the more standard framework in Euclidean space. An advantage of this approach is that it allows a sequence of time slices in a hyperspectral movie to be collapsed to a sequence of points in such a way that some of the key structure within and between the slices is encoded by the points on the Grassmann manifold. This motivates the search for topological features, associated with the evolution of the frames of a hyperspectral movie, within the corresponding points on the Grassmann manifold. The proposed mathematical model affords the processing of large data sets while retaining valuable discriminatory information. In this paper, we discuss how embedding our data in the Grassmann manifold, together with topological data analysis, captures dynamical events that occur as the chemical plume is released and evolves.
  183. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations (2016)

    Abdellah Tebani, Carlos Afonso, Stéphane Marret, Soumeya Bekri
    Abstract The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
  184. Object-Oriented Persistent Homology (2016)

    Bao Wang, Guo-Wei Wei
    Abstract Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data.
  185. Persistence-Based Pooling for Shape Pose Recognition (2016)

    Thomas Bonis, Maks Ovsjanikov, Steve Oudot, Frédéric Chazal
    Abstract In this paper, we propose a novel pooling approach for shape classification and recognition using the bag-of-words pipeline, based on topological persistence, a recent tool from Topological Data Analysis. Our technique extends the standard max-pooling, which summarizes the distribution of a visual feature with a single number, thereby losing any notion of spatiality. Instead, we propose to use topological persistence, and the derived persistence diagrams, to provide significantly more informative and spatially sensitive characterizations of the feature functions, which can lead to better recognition performance. Unfortunately, despite their conceptual appeal, persistence diagrams are difficult to handle, since they are not naturally represented as vectors in Euclidean space and even the standard metric, the bottleneck distance is not easy to compute. Furthermore, classical distances between diagrams, such as the bottleneck and Wasserstein distances, do not allow to build positive definite kernels that can be used for learning. To handle this issue, we provide a novel way to transform persistence diagrams into vectors, in which comparisons are trivial. Finally, we demonstrate the performance of our construction on the Non-Rigid 3D Human Models SHREC 2014 dataset, where we show that topological pooling can provide significant improvements over the standard pooling methods for the shape pose recognition within the bag-of-words pipeline.
  186. Hierarchical Structures of Amorphous Solids Characterized by Persistent Homology (2016)

    Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, Yasumasa Nishiura
    Abstract This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.
  187. Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments (2016)

    Nithin Shivshankar, Pratyush Pranav, Vijay Natarajan, Rien van de Weygaert, E. G. Patrick Bos, Steven Rieder
    Abstract The large-scale structure of the universe is comprised of virialized blob-like clusters, linear filaments, sheet-like walls and huge near empty three-dimensional voids. Characterizing the large scale universe is essential to our understanding of the formation and evolution of galaxies. The density range of clusters, walls and voids are relatively well separated, when compared to filaments, which span a relatively larger range. The large scale filamentary network thus forms an intricate part of the cosmic web. In this paper, we describe Felix, a topology based framework for visual exploration of filaments in the cosmic web. The filamentary structure is represented by the ascending manifold geometry of the 2-saddles in the Morse-Smale complex of the density field. We generate a hierarchy of Morse-Smale complexes and query for filaments based on the density ranges at the end points of the filaments. The query is processed efficiently over the entire hierarchical Morse-Smale complex, allowing for interactive visualization. We apply Felix to computer simulations based on the heuristic Voronoi kinematic model and the standard \$\Lambda\$CDM cosmology, and demonstrate its usefulness through two case studies. First, we extract cosmic filaments within and across cluster like regions in Voronoi kinematic simulation datasets. We demonstrate that we produce similar results to existing structure finders. Filaments that form the spine of the cosmic web, which exist in high density regions in the current epoch, are isolated using Felix. Also, filaments present in void-like regions are isolated and visualized. These filamentary structures are often over shadowed by higher density range filaments and are not easily characterizable and extractable using other filament extraction methodologies.
  188. Inference of Ancestral Recombination Graphs Through Topological Data Analysis (2016)

    Pablo G. Cámara, Arnold J. Levine, Raúl Rabadán
    Abstract The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands., Evolution occurs through different mechanisms, including point mutations, gene duplication, horizontal gene transfer, and recombinations. Some of these mechanisms cannot be captured by tree graphs. We present a framework, based on the mathematical tools of computational topology, that can explicitly accommodate both recombination and mutation events across the evolutionary history of a sample of genomic sequences. This approach generates a new type of summary graph and algebraic structures that provide quantitative information on the evolutionary scale and frequency of recombination events. The accompanying software, TARGet, is applied to several examples, including migration between sexually-reproducing populations, human recombination, and recombination in Darwin’s finches.
  189. The Classification of Endoscopy Images With Persistent Homology (2016)

    Olga Dunaeva, Herbert Edelsbrunner, Anton Lukyanov, Michael Machin, Daria Malkova, Roman Kuvaev, Sergey Kashin
    Abstract Aiming at the automatic diagnosis of tumors using narrow band imaging (NBI) magnifying endoscopic (ME) images of the stomach, we combine methods from image processing, topology, geometry, and machine learning to classify patterns into three classes: oval, tubular and irregular. Training the algorithm on a small number of images of each type, we achieve a high rate of correct classifications. The analysis of the learning algorithm reveals that a handful of geometric and topological features are responsible for the overwhelming majority of decisions.
  190. Statistical Topological Data Analysis - A Kernel Perspective (2015)

    Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer
    Abstract We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in two-sample hypothesis testing on synthetic as well as real-world data.
  191. Topological Data Analysis of Contagion Maps for Examining Spreading Processes on Networks (2015)

    Dane Taylor, Florian Klimm, Heather A. Harrington, Miroslav Kramár, Konstantin Mischaikow, Mason A. Porter, Peter J. Mucha
    Abstract Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth’s surface; however, in modern contagions long-range edges—for example, due to airline transportation or communication media—allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct ‘contagion maps’ that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
  192. Topic Detection in Twitter Using Topology Data Analysis (2015)

    Pablo Torres-Tramón, Hugo Hromic, Bahareh Rahmanzadeh Heravi
    Abstract The massive volume of content generated by social media greatly exceeds human capacity to manually process this data in order to identify topics of interest. As a solution, various automated topic detection approaches have been proposed, most of which are based on document clustering and burst detection. These approaches normally represent textual features in standard n-dimensional Euclidean metric spaces. However, in these cases, directly filtering noisy documents is challenging for topic detection. Instead we propose Topol, a topic detection method based on Topology Data Analysis (TDA) that transforms the Euclidean feature space into a topological space where the shapes of noisy irrelevant documents are much easier to distinguish from topically-relevant documents. This topological space is organised in a network according to the connectivity of the points, i.e. the documents, and by only filtering based on the size of the connected components we obtain competitive results compared to other state of the art topic detection methods.
  193. Evasion Paths in Mobile Sensor Networks (2015)

    Henry Adams, Gunnar Carlsson
    Abstract Suppose that ball-shaped sensors wander in a bounded domain. A sensor does not know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In ‘Coordinate-free coverage in sensor networks with controlled boundaries via homology', Vin de Silva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path.
  194. Using Persistent Homology to Reveal Hidden Information in Neural Data (2015)

    Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, Nils A. Baas
    Abstract We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known stimuli that govern neuron activity, and the corresponding state of the animal throughout the experiment performed. Using a generalized linear model for neuron activity and simple assumptions on the effects of the external stimuli, we infer away any contribution to the observed spike trains by the candidate stimuli. Persistent homology then reveals useful information about any further, unknown, covariates.
  195. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology (2015)

    Javier Arsuaga, Tyler Borrman, Raymond Cavalcante, Georgina Gonzalez, Catherine Park
    Abstract DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients with exceedingly large copy number values. More importantly, we detected 10 and 21 additional regions in the Luminal B and basal-like subtypes, respectively. Most of the additional regions were either validated on an independent dataset and/or using GISTIC. Furthermore, we found three new CNAs in the basal-like subtype: a combination of gains and losses in 1p, a gain in 2p and a loss in 14q. Based on these results, we suggest that topological approaches that incorporate multiresolution analyses and that interrogate topological properties of the data can help in the identification of copy number changes in cancer.
  196. A Stable Multi-Scale Kernel for Topological Machine Learning (2015)

    Jan Reininghaus, Stefan Huber, Ulrich Bauer, Roland Kwitt
    Abstract Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.
  197. Fruit Flies and Moduli: Interactions Between Biology and Mathematics (2015)

    Ezra Miller
    Abstract Possibilities for using geometry and topology to analyze statistical problems in biology raise a host of novel questions in geometry, probability, algebra, and combinatorics that demonstrate the power of biology to influence the future of pure mathematics. This expository article is a tour through some biological explorations and their mathematical ramifications. The article starts with evolution of novel topological features in wing veins of fruit flies, which are quantified using the algebraic structure of multiparameter persistent homology. The statistical issues involved highlight mathematical implications of sampling from moduli spaces. These lead to geometric probability on stratified spaces, including the sticky phenomenon for Frechet means and the origin of this mathematical area in the reconstruction of phylogenetic trees.
  198. Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis (2015)

    Jose A. Perea, John Harer
    Abstract We develop in this paper a theoretical framework for the topological study of time series data. Broadly speaking, we describe geometrical and topological properties of sliding window embeddings, as seen through the lens of persistent homology. In particular, we show that maximum persistence at the point-cloud level can be used to quantify periodicity at the signal level, prove structural and convergence theorems for the resulting persistence diagrams, and derive estimates for their dependency on window size and embedding dimension. We apply this methodology to quantifying periodicity in synthetic data sets and compare the results with those obtained using state-of-the-art methods in gene expression analysis. We call this new method SW1PerS, which stands for Sliding Windows and 1-Dimensional Persistence Scoring.
  199. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory (2015)

    Olaf Delgado-Friedrichs, Vanessa Robins, Adrian Sheppard
    Abstract We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.
  200. Multiresolution Persistent Homology for Excessively Large Biomolecular Datasets (2015)

    Kelin Xia, Zhixiong Zhao, Guo-Wei Wei
    Abstract Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.
  201. Clique Topology Reveals Intrinsic Geometric Structure in Neural Correlations (2015)

    Chad Giusti, Eva Pastalkova, Carina Curto, Vladimir Itskov
    Abstract Detecting structure in neural activity is critical for understanding the function of neural circuits. The coding properties of neurons are typically investigated by correlating their responses to external stimuli. It is not clear, however, if the structure of neural activity can be inferred intrinsically, without a priori knowledge of the relevant stimuli. We introduce a novel method, called clique topology, that detects intrinsic structure in neural activity that is invariant under nonlinear monotone transformations. Using pairwise correlations of neurons in the hippocampus, we demonstrate that our method is capable of detecting geometric structure from neural activity alone, without appealing to external stimuli or receptive fields.Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a 2D environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during nonspatial behaviors such as wheel running and rapid eye movement (REM) sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown.
  202. Cooperative Grasping Through Topological Object Representation (2014)

    A. Marzinotto, J. A. Stork, D. V. Dimarogonas, D. Kragic
    Abstract We present a cooperative grasping approach based on a topological representation of objects. Using point cloud data we extract loops on objects suitable for generating entanglement. We use the Gauss Linking Integral to derive controllers for multi-agent systems that generate hooking grasps on such loops while minimizing the entanglement between robots. The approach copes well with noisy point cloud data, it is computationally simple and robust. We demonstrate the method for performing object grasping and transportation, through a hooking maneuver, with two coordinated NAO robots.
  203. Parametric Inference Using Persistence Diagrams: a Case Study in Population Genetics (2014)

    Kevin Emmett, Daniel Rosenbloom, Pablo Camara, Raul Rabadan
    Abstract Persistent homology computes topological invariants from point cloud data. Recent work has focused on developing statistical methods for data analysis in this framework. We show that, in certain models, parametric inference can be performed using statistics defined on the computed invariants. We develop this idea with a model from population genetics, the coalescent with recombination. We apply our model to an influenza dataset, identifying two scales of topological structure which have a distinct biological interpretation.
  204. Persistent Homology Analysis of Protein Structure, Flexibility, and Folding (2014)

    Kelin Xia, Guo-Wei Wei
    Abstract SUMMARYProteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics, and transport is one of the most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification, and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. On the basis of the correlation between protein compactness, rigidity, and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix-based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology–function relationship of proteins. Copyright © 2014 John Wiley & Sons, Ltd.
  205. Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis (2014)

    Kevin J. Emmett, Raul Rabadan
    Abstract Pathogenic bacteria present a large disease burden on human health. Control of these pathogens is hampered by rampant lateral gene transfer, whereby pathogenic strains may acquire genes conferring resistance to common antibiotics. Here we introduce tools from topological data analysis to characterize the frequency and scale of lateral gene transfer in bacteria, focusing on a set of pathogens of significant public health relevance. As a case study, we examine the spread of antibiotic resistance in Staphylococcus aureus. Finally, we consider the possible role of the human microbiome as a reservoir for antibiotic resistance genes.
  206. Coverage Criterion in Sensor Networks Stable Under Perturbation (2014)

    Yasuaki Hiraoka, Genki Kusano
    Abstract To the coverage problem of sensor networks, V. de Silva and R. Ghrist (2007) developed several approaches based on (persistent) homology theory. Their criteria for the coverage are formulated on the Rips complexes constructed by the sensors, in which their locations are supposed to be fixed. However, the sensors are in general affected by perturbations (e.g., natural phenomena), and hence the stability of the coverage criteria should be also discussed. In this paper, we present a coverage theorem stable under perturbation. Furthermore, we also introduce a method of eliminating redundant cover after perturbation. The coverage theorem is derived by extending the Rips interleaving theorem studied by F. Chazal, V. de Silva, and S. Oudot (2013) into an appropriate relative version.
  207. Topological Descriptors of Histology Images (2014)

    Nikhil Singh, Heather D. Couture, J. S. Marron, Charles Perou, Marc Niethammer
    Abstract The purpose of this study is to investigate architectural characteristics of cell arrangements in breast cancer histology images. We propose the use of topological data analysis to summarize the geometric information inherent in tumor cell arrangements. Our goal is to use this information as signatures that encode robust summaries of cell arrangements in tumor tissue as captured through histology images. In particular, using ideas from algebraic topology we construct topological descriptors based on cell nucleus segmentations such as persistency charts and Betti sequences. We assess their performance on the task of discriminating the breast cancer subtypes Basal, Luminal A, Luminal B and HER2. We demonstrate that the topological features contain useful complementary information to image-appearance based features that can improve discriminatory performance of classifiers.
  208. Topological Data Analysis of Escherichia Coli O157:H7 and Non-O157 Survival in Soils (2014)

    Abasiofiok M. Ibekwe, Jincai Ma, David E. Crowley, Ching-Hong Yang, Alexis M. Johnson, Tanya C. Petrossian, Pek Y. Lum
    Abstract Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 strain 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.
  209. Morse Theory and Persistent Homology for Topological Analysis of 3D Images of Complex Materials (2014)

    O. Delgado-Friedrichs, V. Robins, A. Sheppard
    Abstract We develop topologically accurate and compatible definitions for the skeleton and watershed segmentation of a 3D digital object that are computed by a single algorithm. These definitions are based on a discrete gradient vector field derived from a signed distance transform. This gradient vector field is amenable to topological analysis and simplification via For-man's discrete Morse theory and provides a filtration that can be used as input to persistent homology algorithms. Efficient implementations allow us to process large-scale x-ray micro-CT data of rock cores and other materials.
  210. CD8 T-Cell Reactivity to Islet Antigens Is Unique to Type 1 While CD4 T-Cell Reactivity Exists in Both Type 1 and Type 2 Diabetes (2014)

    Ghanashyam Sarikonda, Jeremy Pettus, Sonal Phatak, Sowbarnika Sachithanantham, Jacqueline F. Miller, Johnna D. Wesley, Eithon Cadag, Ji Chae, Lakshmi Ganesan, Ronna Mallios, Steve Edelman, Bjoern Peters, Matthias von Herrath
    Abstract Previous cross-sectional analyses demonstrated that CD8+ and CD4+ T-cell reactivity to islet-specific antigens was more prevalent in T1D subjects than in healthy donors (HD). Here, we examined T1D-associated epitope-specific CD4+ T-cell cytokine production and autoreactive CD8+ T-cell frequency on a monthly basis for one year in 10 HD, 33 subjects with T1D, and 15 subjects with T2D. Autoreactive CD4+ T-cells from both T1D and T2D subjects produced more IFN-γ when stimulated than cells from HD. In contrast, higher frequencies of islet antigen-specific CD8+ T-cells were detected only in T1D. These observations support the hypothesis that general beta-cell stress drives autoreactive CD4+ T-cell activity while islet over-expression of MHC class I commonly seen in T1D mediates amplification of CD8+ T-cells and more rapid beta-cell loss. In conclusion, CD4+ T-cell autoreactivity appears to be present in both T1D and T2D while autoreactive CD8+ T-cells are unique to T1D. Thus, autoreactive CD8+ cells may serve as a more T1D-specific biomarker.
  211. Homological Scaffolds of Brain Functional Networks (2014)

    G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, F. Vaccarino
    Abstract Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci.10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.
  212. A Topology-Based Object Representation for Clasping, Latching and Hooking (2013)

    J. A. Stork, F. T. Pokorny, D. Kragic
    Abstract We present a loop-based topological object representation for objects with holes. The representation is used to model object parts suitable for grasping, e.g. handles, and it incorporates local volume information about these. Furthermore, we present a grasp synthesis framework that utilizes this representation for synthesizing caging grasps that are robust under measurement noise. The approach is complementary to a local contact-based force-closure analysis as it depends on global topological features of the object. We perform an extensive evaluation with four robotic hands on synthetic data. Additionally, we provide real world experiments using a Kinect sensor on two robotic platforms: a Schunk dexterous hand attached to a Kuka robot arm as well as a Nao humanoid robot. In the case of the Nao platform, we provide initial experiments showing that our approach can be used to plan whole arm hooking as well as caging grasps involving only one hand.
  213. Grasping Objects With Holes: A Topological Approach (2013)

    F. T. Pokorny, J. A. Stork, D. Kragic
    Abstract This work proposes a topologically inspired approach for generating robot grasps on objects with `holes'. Starting from a noisy point-cloud, we generate a simplicial representation of an object of interest and use a recently developed method for approximating shortest homology generators to identify graspable loops. To control the movement of the robot hand, a topologically motivated coordinate system is used in order to wrap the hand around such loops. Finally, another concept from topology - namely the Gauss linking integral - is adapted to serve as evidence for secure caging grasps after a grasp has been executed. We evaluate our approach in simulation on a Barrett hand using several target objects of different sizes and shapes and present an initial experiment with real sensor data.
  214. Applications of Persistent Homology to Time Varying Systems (2013)

    Elizabeth Munch
    Abstract \textlessp\textgreaterThis dissertation extends the theory of persistent homology to time varying systems. Most of the previous work has been dedicated to using this powerful tool in topological data analysis to study static point clouds. In particular, given a point cloud, we can construct its persistence diagram. Since the diagram varies continuously as the point cloud varies continuously, we study the space of time varying persistence diagrams, called vineyards when they were introduced by Cohen-Steiner, Edelsbrunner, and Morozov.\textless/p\textgreater\textlessp\textgreaterWe will first show that with a good choice of metric, these vineyards are stable for small perturbations of their associated point clouds. We will also define a new mean for a set of persistence diagrams based on the work of Mileyko et al. which, unlike the previously defined mean, is continuous for geodesic vineyards. \textless/p\textgreater\textlessp\textgreaterNext, we study the sensor network problem posed by Ghrist and de Silva, and their application of persistent homology to understand when a set of sensors covers a given region. Giving each of these sensors a probability of failure over time, we show that an exact computation of the probability of failure of the whole system is NP-hard, but give an algorithm which can predict failure in the case of a monitored system.\textless/p\textgreater\textlessp\textgreaterFinally, we apply these methods to an automated system which can cluster agents moving in aerial images by their behaviors. We build a data structure for storing and querying the information in real-time, and define behavior vectors which quantify behaviors of interest. This clustering by behavior can be used to find groups of interest, for which we can also quantify behaviors in order to determine whether the group is working together to achieve a common goal, and we speculate that this work can be extended to improving tracking algorithms as well as behavioral predictors.\textless/p\textgreater
  215. A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology (2012)

    Y. Dabaghian, F. Mémoli, L. Frank, G. Carlsson
    Abstract An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity., Our ability to navigate our environments relies on the ability of our brains to form an internal representation of the spaces we're in. The hippocampus plays a central role in forming this internal spatial map, and it is thought that the ensemble of active “place cells” (neurons that are sensitive to location) somehow encode metrical information about the environment, akin to a street map. Several considerations suggested to us, however, that the brain might be more interested in topological information—i.e., connectivity, containment, and adjacency, more akin to a subway map— so we employed new methods in computational topology to estimate how basic properties of neuronal firing affect the time required to form a hippocampal spatial map of three test environments. Our analysis suggests that, in order to encode topological information correctly and in a biologically reasonable amount of time, the hippocampal place cells must operate within certain parameters of neuronal activity that vary with both the geometric and topological properties of the environment. The interplay of these parameters forms a “learning region” in which changes in one parameter can successfully compensate for changes in the others; values beyond the limits of this region, however, impair map formation.
  216. Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures (2012)

    B. Rieck, H. Mara, H. Leitte
    Abstract The extraction of significant structures in arbitrary high-dimensional data sets is a challenging task. Moreover, classifying data points as noise in order to reduce a data set bears special relevance for many application domains. Standard methods such as clustering serve to reduce problem complexity by providing the user with classes of similar entities. However, they usually do not highlight relations between different entities and require a stopping criterion, e.g. the number of clusters to be detected. In this paper, we present a visualization pipeline based on recent advancements in algebraic topology. More precisely, we employ methods from persistent homology that enable topological data analysis on high-dimensional data sets. Our pipeline inherently copes with noisy data and data sets of arbitrary dimensions. It extracts central structures of a data set in a hierarchical manner by using a persistence-based filtering algorithm that is theoretically well-founded. We furthermore introduce persistence rings, a novel visualization technique for a class of topological features-the persistence intervals-of large data sets. Persistence rings provide a unique topological signature of a data set, which helps in recognizing similarities. In addition, we provide interactive visualization techniques that assist the user in evaluating the parameter space of our method in order to extract relevant structures. We describe and evaluate our analysis pipeline by means of two very distinct classes of data sets: First, a class of synthetic data sets containing topological objects is employed to highlight the interaction capabilities of our method. Second, in order to affirm the utility of our technique, we analyse a class of high-dimensional real-world data sets arising from current research in cultural heritage.
  217. Persistent Brain Network Homology From the Perspective of Dendrogram (2012)

    Hyekyoung Lee, Hyejin Kang, Moo K. Chung, Bung-Nyun Kim, Dong Soo Lee
    Abstract The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects.
  218. Substructure Topology Preserving Simplification of Tetrahedral Meshes (2011)

    Fabien Vivodtzev, Georges-Pierre Bonneau, Stefanie Hahmann, Hans Hagen
    Abstract Interdisciplinary efforts in modeling and simulating phenomena have led to complex multi-physics models involving different physical properties and materials in the same system. Within a 3d domain, substructures of lower dimensions appear at the interface between different materials. Correspondingly, an unstructuredtetrahedral mesh used for such a simulation includes 2d and 1d substructures embedded in the vertices, edges and faces of the mesh.The simplification of suchtetrahedral meshes must preserve (1) the geometry and the topology of the 3d domain, (2) the simulated data and (3) the geometry and topology of the embedded substructures. Although intensive research has been conducted on the first two goals, the third objective has received little attention.This paper focuses on the preservation of the topology of 1d and 2d substructures embedded in an unstructuredtetrahedral mesh, during edge collapse simplification. We define these substructures as simplicial sub-complexes of the mesh, which is modeled as an extended simplicial complex. We derive a robust algorithm, based on combinatorial topology results, in order to determine if an edge can be collapsed without changing the topology of both the mesh and all embedded substructures. Based on this algorithm we have developed a system for simplifying scientific datasets defined on irregular tetrahedral meshes with substructures. The implementation of our system is discussed in detail. We demonstrate the power of our system with real world scientific datasets from electromagnetism simulations.
  219. Topology-Based Kernels With Application to Inference Problems in Alzheimer’s Disease (2011)

    Deepti Pachauri, Chris Hinrichs, Moo K. Chung, Sterling C. Johnson, Vikas Singh
    Abstract Alzheimer’s disease (AD) research has recently witnessed a great deal of activity focused on developing new statistical learning tools for automated inference using imaging data. The workhorse for many of these techniques is the Support Vector Machine (SVM) framework (or more generally kernel based methods). Most of these require, as a first step, specification of a kernel matrix between input examples (i.e., images). The inner product between images Ii and Ij in a feature space can generally be written in closed form, and so it is convenient to treat as “given”. However, in certain neuroimaging applications such an assumption becomes problematic. As an example, it is rather challenging to provide a scalar measure of similarity between two instances of highly attributed data such as cortical thickness measures on cortical surfaces. Note that cortical thickness is known to be discriminative for neurological disorders, so leveraging such information in an inference framework, especially within a multi-modal method, is potentially advantageous. But despite being clinically meaningful, relatively few works have successfully exploited this measure for classification or regression. Motivated by these applications, our paper presents novel techniques to compute similarity matrices for such topologically-based attributed data. Our ideas leverage recent developments to characterize signals (e.g., cortical thickness) motivated by the persistence of their topological features, leading to a scheme for simple constructions of kernel matrices. As a proof of principle, on a dataset of 356 subjects from the ADNI study, we report good performance on several statistical inference tasks without any feature selection, dimensionality reduction, or parameter tuning.
  220. Branching and Circular Features in High Dimensional Data (2011)

    B. Wang, B. Summa, V. Pascucci, M. Vejdemo-Johansson
    Abstract Large observations and simulations in scientific research give rise to high-dimensional data sets that present many challenges and opportunities in data analysis and visualization. Researchers in application domains such as engineering, computational biology, climate study, imaging and motion capture are faced with the problem of how to discover compact representations of highdimensional data while preserving their intrinsic structure. In many applications, the original data is projected onto low-dimensional space via dimensionality reduction techniques prior to modeling. One problem with this approach is that the projection step in the process can fail to preserve structure in the data that is only apparent in high dimensions. Conversely, such techniques may create structural illusions in the projection, implying structure not present in the original high-dimensional data. Our solution is to utilize topological techniques to recover important structures in high-dimensional data that contains non-trivial topology. Specifically, we are interested in high-dimensional branching structures. We construct local circle-valued coordinate functions to represent such features. Subsequently, we perform dimensionality reduction on the data while ensuring such structures are visually preserved. Additionally, we study the effects of global circular structures on visualizations. Our results reveal never-before-seen structures on real-world data sets from a variety of applications.
  221. Persistent Betti Numbers for a Noise Tolerant Shape-Based Approach to Image Retrieval (2011)

    Patrizio Frosini, Claudia Landi
    Abstract In content-based image retrieval a major problem is the presence of noisy shapes. It is well known that persistent Betti numbers are a shape descriptor that admits a dissimilarity distance, the matching distance, stable under continuous shape deformations. In this paper we focus on the problem of dealing with noise that changes the topology of the studied objects. We present a general method to turn persistent Betti numbers into stable descriptors also in the presence of topological changes. Retrieval tests on the Kimia-99 database show the effectiveness of the method.
  222. Topological Feature Extraction for Comparison of Terascale Combustion Simulation Data (2011)

    Ajith Mascarenhas, Ray W. Grout, Peer-Timo Bremer, Evatt R. Hawkes, Valerio Pascucci, Jacqueline H. Chen
    Abstract We describe a combinatorial streaming algorithm to extract features which identify regions of local intense rates of mixing in twoterascale turbulent combustion simulations. Our algorithm allows simulation data comprised of scalar fields represented on 728x896x512 or 2025x1600x400 grids to be processed on a single relatively lightweight machine. The turbulence-induced mixing governs the rate of reaction and hence is of principal interest in these combustion simulations. We use our feature extraction algorithm to compare two very different simulations and find that in both the thickness of the extracted features grows with decreasing turbulence intensity. Simultaneous consideration of results of applying the algorithm to the HO2 mass fraction field indicates that autoignition kernels near the base of a lifted flame tend not to overlap with the high mixing rate regions.
  223. Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web (2011)

    Rien Van De Weygaert, Gert Vegter, Herbert Edelsbrunner, Bernard J. T. Jones, Pratyush Pranav, Changbom Park, Wojciech A. Hellwing, Bob Eldering, Nico Kruithof, E. G. P. Bos, Johan Hidding, Job Feldbrugge, Eline Ten Have, Matti Van Engelen, Manuel Caroli, Monique Teillaud
    Abstract We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of...
  224. Multiphase Mixing Quantification by Computational Homology and Imaging Analysis (2011)

    Jianxin Xu, Hua Wang, Hui Fang
    Abstract The purpose of this study is to introduce a new technique for quantifying the efficiency of multiphase mixing. This technique based on algebraic topology is illustrated by using the hydraulic modeling of gas agitated reactors stirred by top lance gas injection and image analysis. The zeroth Betti numbers are used to estimate the numbers of pieces in the patterns, leading to a useful parameter to characterize the mixture homogeneity. The first Betti numbers are introduced to characterize the nonhomogeneity of the mixture. The mixing efficiency can be characterized by the Betti numbers for binary images of the patterns. This novel method may be applied for studying a variety of multiphase mixing problems in which multiphase components or tracers are visually distinguishable.
  225. Theory and Algorithms for Constructing Discrete Morse Complexes From Grayscale Digital Images (2011)

    V. Robins, P. J. Wood, A. P. Sheppard
    Abstract We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology.
  226. Lipschitz Functions Have Lp-Stable Persistence (2010)

    David Cohen-Steiner, Herbert Edelsbrunner, John Harer, Yuriy Mileyko
    Abstract We prove two stability results for Lipschitz functions on triangulable, compact metric spaces and consider applications of both to problems in systems biology. Given two functions, the first result is formulated in terms of the Wasserstein distance between their persistence diagrams and the second in terms of their total persistence.
  227. On the Local Behavior of Spaces of Natural Images (2008)

    Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, Afra Zomorodian
    Abstract In this study we concentrate on qualitative topological analysis of the local behavior of the space of natural images. To this end, we use a space of 3 by 3 high-contrast patches ℳ. We develop a theoretical model for the high-density 2-dimensional submanifold of ℳ showing that it has the topology of the Klein bottle. Using our topological software package PLEX we experimentally verify our theoretical conclusions. We use polynomial representation to give coordinatization to various subspaces of ℳ. We find the best-fitting embedding of the Klein bottle into the ambient space of ℳ. Our results are currently being used in developing a compression algorithm based on a Klein bottle dictionary.
  228. Structural Insight Into RNA Hairpin Folding Intermediates (2008)

    Gregory R. Bowman, Xuhui Huang, Yuan Yao, Jian Sun, Gunnar Carlsson, Leonidas J. Guibas, Vijay S. Pande
    Abstract , Hairpins are a ubiquitous secondary structure motif in RNA molecules. Despite their simple structure, there is some debate over whether they fold in a two-state or multi-state manner. We have studied the folding of a small tetraloop hairpin using a serial version of replica exchange molecular dynamics on a distributed computing environment. On the basis of these simulations, we have identified a number of intermediates that are consistent with experimental results. We also find that folding is not simply the reverse of high-temperature unfolding and suggest that this may be a general feature of biomolecular folding.
  229. Topological Analysis of Population Activity in Visual Cortex (2008)

    Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson, Dario L. Ringach
    Abstract Information in the cortex is thought to be represented by the joint activity of neurons. Here we describe how fundamental questions about neural representation can be cast in terms of the topological structure of population activity. A new method, based on the concept of persistent homology, is introduced and applied to the study of population activity in primary visual cortex (V1). We found that the topological structure of activity patterns when the cortex is spontaneously active is similar to those evoked by natural image stimulation and consistent with the topology of a two sphere. We discuss how this structure could emerge from the functional organization of orientation and spatial frequency maps and their mutual relationship. Our findings extend prior results on the relationship between spontaneous and evoked activity in V1 and illustrates how computational topology can help tackle elementary questions about the representation of information in the nervous system.
  230. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition (2007)

    Gurjeet Singh, Facundo Mémoli, Gunnar Carlsson
    Abstract We present a computational method for extracting simple descriptions of high dimensional data sets in the form of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided by a set of functions defined on the data. The proposed method is not dependent on any particular clustering algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few sample applications in which simple descriptions of the data present important information about its structure.
  231. Coverage in Sensor Networks via Persistent Homology (2007)

    Vin de Silva, Robert Ghrist
    Abstract We introduce a topological approach to a problem of covering a region in Euclidean space by balls of fixed radius at unknown locations (this problem being motivated by sensor networks with minimal sensing capabilities). In particular, we give a homological criterion to rigorously guarantee that a collection of balls covers a bounded domain based on the homology of a certain simplicial pair. This pair of (Vietoris–Rips) complexes is derived from graphs representing a coarse form of distance estimation between nodes and a proximity sensor for the boundary of the domain. The methods we introduce come from persistent homology theory and are applicable to nonlocalized sensor networks with ad hoc wireless communications.
  232. Persistent Voids: A New Structural Metric for Membrane Fusion (2007)

    Peter M. Kasson, Afra Zomorodian, Sanghyun Park, Nina Singhal, Leonidas J. Guibas, Vijay S. Pande
    Abstract Motivation: Membrane fusion constitutes a key stage in cellular processes such as synaptic neurotransmission and infection by enveloped viruses. Current experimental assays for fusion have thus far been unable to resolve early fusion events in fine structural detail. We have previously used molecular dynamics simulations to develop mechanistic models of fusion by small lipid vesicles. Here, we introduce a novel structural measurement of vesicle topology and fusion geometry: persistent voids.Results: Persistent voids calculations enable systematic measurement of structural changes in vesicle fusion by assessing fusion stalk widths. They also constitute a generally applicable technique for assessing lipid topological change. We use persistent voids to compute dynamic relationships between hemifusion neck widening and formation of a full fusion pore in our simulation data. We predict that a tightly coordinated process of hemifusion neck expansion and pore formation is responsible for the rapid vesicle fusion mechanism, while isolated enlargement of the hemifusion diaphragm leads to the formation of a metastable hemifused intermediate. These findings suggest that rapid fusion between small vesicles proceeds via a small hemifusion diaphragm rather than a fully expanded one.Availability: Software available upon request pending public release.Contact:kasson@cmgm.stanford-edu or pande@stanford.eduSupplementary information: Supplementary data are available on Bioinformatics online.
  233. Coordinate-Free Coverage in Sensor Networks With Controlled Boundaries via Homology (2006)

    V. de Silva, R. Ghrist
    Abstract Tools from computational homology are introduced to verify coverage in an idealized sensor network. These methods are unique in that, while they are coordinate-free and assume no localization or orientation capabilities for the nodes, there are also no probabilistic assumptions. The key ingredient is the theory of homology from algebraic topology. The robustness of these tools is demonstrated by adapting them to a variety of settings, including static planar coverage, 3-D barrier coverage, and time-dependent sweeping coverage. Results are also given on hole repair, error tolerance, optimal coverage, and variable radii. An overview of implementation is given.
  234. Blind Swarms for Coverage in 2-D (2005)

    V. D. Silva, R. Ghrist, A. Muhammad
    Abstract We consider coverage problems in robot sensor networks with minimal sensing capabilities. In particular, we demonstrate that a “blind” swarm of robots with no localization and only a weak form of distance estimation can rigorously determine coverage in a bounded planar domain of unknown size and shape. The methods we introduce come from algebraic topology. I. COVERAGE PROBLEMS Many of the potential applications of robot swarms require information about coverage in a given domain. For example, using a swarm of robot sensors for surveillance and security applications carries with it the charge to maximize, or, preferably, guarantee coverage. Such applications include networks of security cameras, mine field sweeping via networked robots [18], and oceanographic sampling [4]. In these contexts, each robot has some coverage domain, and one wishes to know about the union of these coverage domains. Such problems are also crucial in applications not involving robots directly, e.g., communication networks. As a preliminary analysis, we consider the static “field” coverage problem, in which robots are assumed stationary and the goal is to verify blanket coverage of a given domain. There is a large literature on this subject; see, e.g., [7], [1], [16]. In addition, there are variants on these problems involving “barrier” coverage to separate regions. Dynamic or “sweeping” coverage [3] is a common and challenging task with applications ranging from security to vacuuming. Although a sensor network composed of robots will have dynamic capabilities, we restrict attention in this brief paper to the static case in order to lay the groundwork for future inquiry. There are two primary approaches to static coverage problems in the literature. The first uses computational geometry tools applied to exact node coordinates. This typically involves ‘ruler-and-compass’ style geometry [10] or Delaunay triangulations of the domain [16], [14], [20]. Such approaches are very rigid with regards to inputs: one must know exact node coordinates and one must know the geometry of the domain precisely to determine the Delaunay complex. To alleviate the former requirement, many authors have turned to probabilistic tools. For example, in [13], the author assumes a randomly and uniformly distributed collection of nodes in a domain with a fixed geometry and proves expected area coverage. Other approaches [15], [19] give percolationtype results about coverage and network integrity for randomly distributed nodes. The drawback of these methods is the need for strong assumptions about the exact shape of the domain, as well as the need for a uniform distribution of nodes. In the sensor networks community, there is a compelling interest (and corresponding burgeoning literature) in determining properties of a network in which the nodes do not possess coordinate data. One example of a coordinate-free approach is in [17], which gives a heuristic method for geographic routing without coordinate data: among the large literature arising from this paper, we note in particular the mathematical analysis of this approach in [11]. To our knowledge, noone has treated the coverage problem in a coordinate-free setting. In this note, we introduce a new set of tools for answering coverage problems in robotics and sensor networks with minimal assumptions about domain geometry and node localization. We provide a sufficiency criterion for coverage. We do not answer the problem of how the nodes should be placed in order to maximize coverage, nor the minimum number of such nodes necessary; neither do we address how to reallocate nodes to fill coverage holes.
  235. A Barcode Shape Descriptor for Curve Point Cloud Data (2004)

    Anne Collins, Afra Zomorodian, Gunnar Carlsson, Leonidas J. Guibas
    Abstract In this paper, we present a complete computational pipeline for extracting a compact shape descriptor for curve point cloud data (PCD). Our shape descriptor, called a barcode, is based on a blend of techniques from differential geometry and algebraic topology. We also provide a metric over the space of barcodes, enabling fast comparison of PCDs for shape recognition and clustering. To demonstrate the feasibility of our approach, we implement our pipeline and provide experimental evidence in shape classification and parametrization.
  236. Construction of Symbolic Dynamics From Experimental Time Series (1999)

    K. Mischaikow, M. Mrozek, J. Reiss, A. Szymczak
    Abstract Symbolic dynamics play a central role in the description of the evolution of nonlinear systems. Yet there are few methods for determining symbolic dynamics of chaotic data. One difficulty is that the data contains random fluctuations associated with the experimental process. Using data obtained from a magnetoelastic ribbon experiment we show how a topological approach that allows for experimental error and bounded noise can be used to obtain a description of the dynamics in terms of subshift dynamics on a finite set of symbols.