@misc{spitz_confinement_2022,
abstract = {We investigate the structure of confining and deconfining phases in {SU}(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture of confinement. In particular, topological densities form spatial lumps which show signatures of the classical probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions are encoded in holonomy Lie algebra fields, following the semi-classical temperature dependence of the instanton appearance probability. Debye screening discriminating between electric and magnetic fields is visible in persistent homology and pronounced at large gauge coupling. All employed constructions are gauge-invariant without a priori assumptions on the configurations under study. This work showcases the versatility of persistent homology for statistical and quantum physics studies, barely explored to date.},
author = {Spitz, Daniel and Urban, Julian M. and Pawlowski, Jan M.},
date = {2022-08-08},
doi = {10.48550/arXiv.2208.03955},
eprint = {2208.03955 [cond-mat, physics:hep-lat, physics:hep-ph, physics:hep-th]},
eprinttype = {arxiv},
keywords = {1 - Confinement, 1 - Deconfinement, 1 - Lattice gauge theory, 1 - Physics, 1 - {QCD}, 1 - Quantum chromodynamics, 1 - Quantum physics, 2 - Betti number distribution, 2 - Persistence statistics, 2 - Persistent homology, 3 - Lattice field configurations, Innovate},
number = {{arXiv}:2208.03955},
publisher = {{arXiv}},
title = {Confinement in non-Abelian lattice gauge theory via persistent homology},
url = {http://arxiv.org/abs/2208.03955},
urldate = {2022-11-30}
}