🍩 Database of Original & Non-Theoretical Uses of Topology
(found 65 matches in 0.007812s)
-
-
Cliques and Cavities in the Human Connectome (2018)
Ann E. Sizemore, Chad Giusti, Ari Kahn, Jean M. Vettel, Richard F. Betzel, Danielle S. BassettAbstract
Encoding brain regions and their connections as a network of nodes and edges captures many of the possible paths along which information can be transmitted as humans process and perform complex behaviors. Because cognitive processes involve large, distributed networks of brain areas, principled examinations of multi-node routes within larger connection patterns can offer fundamental insights into the complexities of brain function. Here, we investigate both densely connected groups of nodes that could perform local computations as well as larger patterns of interactions that would allow for parallel processing. Finding such structures necessitates that we move from considering exclusively pairwise interactions to capturing higher order relations, concepts naturally expressed in the language of algebraic topology. These tools can be used to study mesoscale network structures that arise from the arrangement of densely connected substructures called cliques in otherwise sparsely connected brain networks. We detect cliques (all-to-all connected sets of brain regions) in the average structural connectomes of 8 healthy adults scanned in triplicate and discover the presence of more large cliques than expected in null networks constructed via wiring minimization, providing architecture through which brain network can perform rapid, local processing. We then locate topological cavities of different dimensions, around which information may flow in either diverging or converging patterns. These cavities exist consistently across subjects, differ from those observed in null model networks, and – importantly – link regions of early and late evolutionary origin in long loops, underscoring their unique role in controlling brain function. These results offer a first demonstration that techniques from algebraic topology offer a novel perspective on structural connectomics, highlighting loop-like paths as crucial features in the human brain’s structural architecture. -
Connectivity in fMRI: Blind Spots and Breakthroughs (2018)
Victor Solo, Jean-Baptiste Poline, Martin A. Lindquist, Sean L. Simpson, F. DuBois Bowman, Moo K. Chung, Ben CassidyAbstract
In recent years, driven by scientific and clinical concerns, there has been an increased interest in the analysis of functional brain networks. The goal of these analyses is to better understand how brain regions interact, how this depends upon experimental conditions and behavioral measures and how anomalies (disease) can be recognized. In this work we provide, firstly, a brief review of some of the main existing methods of functional brain network analysis. But rather than compare them, as a traditional review would do, instead, we draw attention to their significant limitations and blind spots. Then, secondly, relevant experts, sketch a number of emerging methods, which can break through these limitations. In particular we discuss five such methods. The first two, stochastic block models and exponential random graph models, provide an inferential basis for network analysis lacking in the exploratory graph analysis methods. The other three address: network comparison via persistent homology, time-varying connectivity that distinguishes sample fluctuations from neural fluctuations and, network system identification that draws inferential strength from temporal autocorrelation. -
Resting-State fMRI Functional Connectivity: Big Data Preprocessing Pipelines and Topological Data Analysis (2017)
Angkoon Phinyomark, Esther Ibáñez-Marcelo, Giovanni Petri -
Homological Scaffold via Minimal Homology Bases (2021)
Marco Guerra, Alessandro De Gregorio, Ulderico Fugacci, Giovanni Petri, Francesco VaccarinoAbstract
The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks. -
A Topological Framework for Deep Learning (2020)
Mustafa Hajij, Kyle IstvanAbstract
We utilize classical facts from topology to show that the classification problem in machine learning is always solvable under very mild conditions. Furthermore, we show that a softmax classification network acts on an input topological space by a finite sequence of topological moves to achieve the classification task. Moreover, given a training dataset, we show how topological formalism can be used to suggest the appropriate architectural choices for neural networks designed to be trained as classifiers on the data. Finally, we show how the architecture of a neural network cannot be chosen independently from the shape of the underlying data. To demonstrate these results, we provide example datasets and show how they are acted upon by neural nets from this topological perspective. -
Cliques of Neurons Bound Into Cavities Provide a Missing Link Between Structure and Function (2017)
Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, Henry MarkramAbstract
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence towards peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities. -
CCF-GNN: A Unified Model Aggregating Appearance, Microenvironment, and Topology for Pathology Image Classification (2023)
Hongxiao Wang, Gang Huang, Zhuo Zhao, Liang Cheng, Anna Juncker-Jensen, Máté Levente Nagy, Xin Lu, Xiangliang Zhang, Danny Z. ChenAbstract
Pathology images contain rich information of cell appearance, microenvironment, and topology features for cancer analysis and diagnosis. Among such features, topology becomes increasingly important in analysis for cancer immunotherapy. By analyzing geometric and hierarchically structured cell distribution topology, oncologists can identify densely-packed and cancer-relevant cell communities (CCs) for making decisions. Compared to commonly-used pixel-level Convolution Neural Network (CNN) features and cell-instance-level Graph Neural Network (GNN) features, CC topology features are at a higher level of granularity and geometry. However, topological features have not been well exploited by recent deep learning (DL) methods for pathology image classification due to lack of effective topological descriptors for cell distribution and gathering patterns. In this paper, inspired by clinical practice, we analyze and classify pathology images by comprehensively learning cell appearance, microenvironment, and topology in a fine-to-coarse manner. To describe and exploit topology, we design Cell Community Forest (CCF), a novel graph that represents the hierarchical formulation process of big-sparse CCs from small-dense CCs. Using CCF as a new geometric topological descriptor of tumor cells in pathology images, we propose CCF-GNN, a GNN model that successively aggregates heterogeneous features (e.g., appearance, microenvironment) from cell-instance-level, cell-community-level, into image-level for pathology image classification. Extensive cross-validation experiments show that our method significantly outperforms alternative methods on H&E-stained; immunofluorescence images for disease grading tasks with multiple cancer types. Our proposed CCF-GNN establishes a new topological data analysis (TDA) based method, which facilitates integrating multi-level heterogeneous features of point clouds (e.g., for cells) into a unified DL framework. -
Fundamentals on Base Stations in Urban Cellular Networks: From the Perspective of Algebraic Topology (2018)
Ying Chen, Rongpeng Li, Zhifeng Zhao, Honggang Zhang -
Dissecting Ethereum Blockchain Analytics: What We Learn From Topology and Geometry of the Ethereum Graph? (2020)
Yitao Li, Umar Islambekov, Cuneyt Akcora, Ekaterina Smirnova, Yulia R. Gel, Murat Kantarcioglu -
Visualizing Emergent Identity of Assemblages in the Consumer Internet of Things: A Topological Data Analysis Approach (2016)
Thomas Novak, Donna L. HoffmanAbstract
The identity of a consumer Internet of Things (IoT) assemblage emerges through a historical process of ongoing interactions among consumers, smart devices, and digital information. Topological Data Analysis (TDA), consistent with mathematical aspects of assemblage theory, is used to visualize the underlying possibility space from which individual IoT assemblages emerge. -
A Novel Approach to Identifying a Neuroimaging Biomarker for Patients With Serious Mental Illness (2017)
Alok Madan, J. Christopher Fowler, Michelle A. Patriquin, Ramiro Salas, Philip R. Baldwin, Kenia M. Velasquez, Humsini Viswanath, David L. Molfese, Carla Sharp, Jon G. Allen -
Multiscale Topology Characterizes Dynamic Tumor Vascular Networks (2022)
Bernadette J. Stolz, Jakob Kaeppler, Bostjan Markelc, Franziska Braun, Florian Lipsmeier, Ruth J. Muschel, Helen M. Byrne, Heather A. Harrington -
Topological Data Analysis and 3D Printing Technologies for Flow in Fracture Networks (2018)
Anna Suzuki, M. Miyazawa, T. Ito -
Applying a Novel Integrated Persistent Feature to Understand Topographical Network Connectivity in Older Adults With Autism Spectrum Disorder (2019)
Michael Catchings -
Deep Learning With Topological Signatures (2017)
Christoph Hofer, Roland Kwitt, Marc Niethammer, Andreas Uhl -
TopoResNet: A Hybrid Deep Learning Architecture and Its Application to Skin Lesion Classification (2019)
Yu-Min Chung, Chuan-Shen Hu, Austin Lawson, Clifford Smyth -
Patient Similarity: Emerging Concepts in Systems and Precision Medicine (2016)
Sherry-Ann Brown -
The Topological Basis of Function in Flow and Mechanical Networks (2019)
Jason Rocks, Andrea Liu, Eleni Katifori -
Cell Complex Neural Networks (2020)
Mustafa Hajij, Kyle Istvan, Ghada ZamzamiAbstract
Cell complexes are topological spaces constructed from simple blocks called cells. They generalize graphs, simplicial complexes, and polyhedral complexes that form important domains for practical applications. We propose a general, combinatorial, and unifying construction for performing neural network-type computations on cell complexes. Furthermore, we introduce inter-cellular message passing schemes, message passing schemes on cell complexes that take the topology of the underlying space into account. In particular, our method generalizes many of the most popular types of graph neural networks. -
What Can Topology Tell Us About the Neural Code? (2017)
Carina CurtoAbstract
Neuroscience is undergoing a period of rapid experimental progress and expansion. New mathematical tools, previously unknown in the neuroscience community, are now being used to tackle fundamental questions and analyze emerging data sets. Consistent with this trend, the last decade has seen an uptick in the use of topological ideas and methods in neuroscience. In this paper I will survey recent applications of topology in neuroscience, and explain why topology is an especially natural tool for understanding neural codes. -
Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury (2015)
Jessica L. Nielson, Jesse Paquette, Aiwen W. Liu, Cristian F. Guandique, C. Amy Tovar, Tomoo Inoue, Karen-Amanda Irvine, John C. Gensel, Jennifer Kloke, Tanya C. Petrossian, Pek Y. Lum, Gunnar E. Carlsson, Geoffrey T. Manley, Wise Young, Michael S. Beattie, Jacqueline C. Bresnahan, Adam R. FergusonAbstract
Data-driven discovery in complex neurological disorders has potential to extract meaningful knowledge from large, heterogeneous datasets. Here the authors apply topological data analysis to assess therapeutic effects in preclinical traumatic brain injury and spinal cord injury research studies. -
Graph Filtration Learning (2020)
Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, Roland KwittAbstract
We propose an approach to learning with graph-structured data in the problem domain of graph classification. In particular, we present a novel type of readout operation to aggregate node features into a graph-level representation. To this end, we leverage persistent homology computed via a real-valued, learnable, filter function. We establish the theoretical foundation for differentiating through the persistent homology computation. Empirically, we show that this type of readout operation compares favorably to previous techniques, especially when the graph connectivity structure is informative for the learning problem. -
Can Neural Networks Learn Persistent Homology Features? (2020)
Guido Montúfar, Nina Otter, Yuguang WangAbstract
Topological data analysis uses tools from topology -- the mathematical area that studies shapes -- to create representations of data. In particular, in persistent homology, one studies one-parameter families of spaces associated with data, and persistence diagrams describe the lifetime of topological invariants, such as connected components or holes, across the one-parameter family. In many applications, one is interested in working with features associated with persistence diagrams rather than the diagrams themselves. In our work, we explore the possibility of learning several types of features extracted from persistence diagrams using neural networks. -
Text Classification via Network Topology: A Case Study on the Holy Quran (2019)
Mehmet Emin Aktas, Esra AkbasAbstract
Due to the growth in the number of texts and documents available online, machine learning based text classification systems are getting more popular recently. Feature extraction, converting unstructured text into a structured feature space, is one of the essential tasks for text classification. In this paper, we propose a novel feature extraction approach for text classification using the network representation of text, network topology, and machine learning techniques. We present experimental results on classifying the Holy Quran chapters based on the place each chapter was revealed to illustrate the effectiveness of the approach. -
Topologically Densified Distributions (2020)
Christoph Hofer, Florian Graf, Marc Niethammer, Roland KwittAbstract
We study regularization in the context of small sample-size learning with over-parametrized neural networks. Specifically, we shift focus from architectural properties, such as norms on the network weights, to properties of the internal representations before a linear classifier. Specifically, we impose a topological constraint on samples drawn from the probability measure induced in that space. This provably leads to mass concentration effects around the representations of training instances, i.e., a property beneficial for generalization. By leveraging previous work to impose topological constrains in a neural network setting, we provide empirical evidence (across various vision benchmarks) to support our claim for better generalization. -
Classification of Skin Lesions by Topological Data Analysis Alongside With Neural Network (2020)
Naiereh Elyasi, Mehdi Hosseini MoghadamAbstract
In this paper we use TDA mapper alongside with deep convolutional neural networks in the classification of 7 major skin diseases. First we apply kepler mapper with neural network as one of its filter steps to classify the dataset HAM10000. Mapper visualizes the classification result by a simplicial complex, where neural network can not do this alone, but as a filter step neural network helps to classify data better. Furthermore we apply TDA mapper and persistent homology to understand the weights of layers of mobilenet network in different training epochs of HAM10000. Also we use persistent diagrams to visualize the results of analysis of layers of mobilenet network. -
HiDeF: Identifying Persistent Structures in Multiscale ‘Omics Data (2021)
Fan Zheng, She Zhang, Christopher Churas, Dexter Pratt, Ivet Bahar, Trey IdekerAbstract
In any ‘omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities revealed from protein networks can vary widely in sizes depending on the method. Here, we use the concept of persistent homology, drawn from mathematical topology, to identify robust structures in data at all scales simultaneously. Application to mouse single-cell transcriptomes significantly expands the catalog of identified cell types, while analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method, HiDeF, is available via Python and Cytoscape. -
Spatial Embedding Imposes Constraints on Neuronal Network Architectures (2018)
Jennifer Stiso, Danielle S. BassettAbstract
Recent progress towards understanding circuit function has capitalized on tools from network science to parsimoniously describe the spatiotemporal architecture of neural systems. Such tools often address systems topology divorced from its physical instantiation. Nevertheless, for embedded systems such as the brain, physical laws directly constrain the processes of network growth, development, and function. We review here the rules imposed by the space and volume of the brain on the development of neuronal networks, and show that these rules give rise to a specific set of complex topologies. These rules also affect the repertoire of neural dynamics that can emerge from the system, and thereby inform our understanding of network dysfunction in disease. We close by discussing new tools and models to delineate the effects of spatial embedding. -
Unifying Immunology With Informatics and Multiscale Biology (2014)
Brian A Kidd, Lauren A Peters, Eric E Schadt, Joel T DudleyAbstract
The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology. -
Topological Regularization for Dense Prediction (2021)
Deqing Fu, Bradley J. NelsonAbstract
Dense prediction tasks such as depth perception and semantic segmentation are important applications in computer vision that have a concrete topological description in terms of partitioning an image into connected components or estimating a function with a small number of local extrema corresponding to objects in the image. We develop a form of topological regularization based on persistent homology that can be used in dense prediction tasks with these topological descriptions. Experimental results show that the output topology can also appear in the internal activations of trained neural networks which allows for a novel use of topological regularization to the internal states of neural networks during training, reducing the computational cost of the regularization. We demonstrate that this topological regularization of internal activations leads to improved convergence and test benchmarks on several problems and architectures. -
Gene Coexpression Network Comparison via Persistent Homology (2018)
Ali Nabi Duman, Harun PirimAbstract
Persistent homology, a topological data analysis (TDA) method, is applied to microarray data sets. Although there are a few papers referring to TDA methods in microarray analysis, the usage of persistent homology in the comparison of several weighted gene coexpression networks (WGCN) was not employed before to the very best of our knowledge. We calculate the persistent homology of weighted networks constructed from 38 Arabidopsis microarray data sets to test the relevance and the success of this approach in distinguishing the stress factors. We quantify multiscale topological features of each network using persistent homology and apply a hierarchical clustering algorithm to the distance matrix whose entries are pairwise bottleneck distance between the networks. The immunoresponses to different stress factors are distinguishable by our method. The networks of similar immunoresponses are found to be close with respect to bottleneck distance indicating the similar topological features of WGCNs. This computationally efficient technique analyzing networks provides a quick test for advanced studies. -
Topological Data Analysis of Contagion Maps for Examining Spreading Processes on Networks (2015)
Dane Taylor, Florian Klimm, Heather A. Harrington, Miroslav Kramár, Konstantin Mischaikow, Mason A. Porter, Peter J. MuchaAbstract
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth’s surface; however, in modern contagions long-range edges—for example, due to airline transportation or communication media—allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct ‘contagion maps’ that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks. -
Revisiting Abnormalities in Brain Network Architecture Underlying Autism Using Topology-Inspired Statistical Inference (2018)
Sourabh Palande, Vipin Jose, Brandon Zielinski, Jeffrey Anderson, P. Thomas Fletcher, Bei WangAbstract
A large body of evidence relates autism with abnormal structural and functional brain connectivity. Structural covariance magnetic resonance imaging (scMRI) is a technique that maps brain regions with covarying gray matter densities across subjects. It provides a way to probe the anatomical structure underlying intrinsic connectivity networks (ICNs) through analysis of gray matter signal covariance. In this article, we apply topological data analysis in conjunction with scMRI to explore network-specific differences in the gray matter structure in subjects with autism versus age-, gender-, and IQ-matched controls. Specifically, we investigate topological differences in gray matter structure captured by structural correlation graphs derived from three ICNs strongly implicated in autism, namely the salience network, default mode network, and executive control network. By combining topological data analysis with statistical inference, our results provide evidence of statistically significant network-specific structural abnormalities in autism. -
Reviews: Topological Distances and Losses for Brain Networks (2021)
Moo K. Chung, Alexander Smith, Gary ShiuAbstract
Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological differences in brain networks. Further, Euclidean distances are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to use distances and loss functions that recognize topology of data. In this review paper, we survey various topological distance and loss functions from topological data analysis (TDA) and persistent homology that can be used in brain network analysis more effectively. Although there are many recent brain imaging studies that are based on TDA methods, possibly due to the lack of method awareness, TDA has not taken as the mainstream tool in brain imaging field yet. The main purpose of this paper is provide the relevant technical survey of these powerful tools that are immediately applicable to brain network data. -
Topic Detection in Twitter Using Topology Data Analysis (2015)
Pablo Torres-Tramón, Hugo Hromic, Bahareh Rahmanzadeh HeraviAbstract
The massive volume of content generated by social media greatly exceeds human capacity to manually process this data in order to identify topics of interest. As a solution, various automated topic detection approaches have been proposed, most of which are based on document clustering and burst detection. These approaches normally represent textual features in standard n-dimensional Euclidean metric spaces. However, in these cases, directly filtering noisy documents is challenging for topic detection. Instead we propose Topol, a topic detection method based on Topology Data Analysis (TDA) that transforms the Euclidean feature space into a topological space where the shapes of noisy irrelevant documents are much easier to distinguish from topically-relevant documents. This topological space is organised in a network according to the connectivity of the points, i.e. the documents, and by only filtering based on the size of the connected components we obtain competitive results compared to other state of the art topic detection methods. -
TDA-Net: Fusion of Persistent Homology and Deep Learning Features for COVID-19 Detection From Chest X-Ray Images (2021)
Mustafa Hajij, Ghada Zamzmi, Fawwaz BataynehAbstract
Topological Data Analysis (TDA) has emerged recently as a robust tool to extract and compare the structure of datasets. TDA identifies features in data (e.g., connected components and holes) and assigns a quantitative measure to these features. Several studies reported that topological features extracted by TDA tools provide unique information about the data, discover new insights, and determine which feature is more related to the outcome. On the other hand, the overwhelming success of deep neural networks in learning patterns and relationships has been proven on various data applications including images. To capture the characteristics of both worlds, we propose TDA-Net, a novel ensemble network that fuses topological and deep features for the purpose of enhancing model generalizability and accuracy. We apply the proposed TDA-Net to a critical application, which is the automated detection of COVID-19 from CXR images. Experimental results showed that the proposed network achieved excellent performance and suggested the applicability of our method in practice. -
Emotion Recognition in Talking-Face Videos Using Persistent Entropy and Neural Networks (2022)
Eduardo Paluzo-Hidalgo, Rocio Gonzalez-Diaz, Guillermo Aguirre-Carrazana, Eduardo Paluzo-Hidalgo, Rocio Gonzalez-Diaz, Guillermo Aguirre-CarrazanaAbstract
\textlessabstract\textgreater\textlessp\textgreaterThe automatic recognition of a person's emotional state has become a very active research field that involves scientists specialized in different areas such as artificial intelligence, computer vision, or psychology, among others. Our main objective in this work is to develop a novel approach, using persistent entropy and neural networks as main tools, to recognise and classify emotions from talking-face videos. Specifically, we combine audio-signal and image-sequence information to compute a \textlessitalic\textgreatertopology signature\textless/italic\textgreater (a 9-dimensional vector) for each video. We prove that small changes in the video produce small changes in the signature, ensuring the stability of the method. These topological signatures are used to feed a neural network to distinguish between the following emotions: calm, happy, sad, angry, fearful, disgust, and surprised. The results reached are promising and competitive, beating the performances achieved in other state-of-the-art works found in the literature.\textless/p\textgreater\textless/abstract\textgreater -
Spatial Applications of Topological Data Analysis: Cities, Snowflakes, Random Structures, and Spiders Spinning Under the Influence (2020)
Michelle Feng, Mason A. PorterAbstract
Spatial networks are ubiquitous in social, geographic, physical, and biological applications. To understand their large-scale structure, it is important to develop methods that allow one to directly probe the effects of space on structure and dynamics. Historically, algebraic topology has provided one framework for rigorously and quantitatively describing the global structure of a space, and recent advances in topological data analysis (TDA) have given scholars a new lens for analyzing network data. In this paper, we study a variety of spatial networks --- including both synthetic and natural ones --- using novel topological methods that we recently developed specifically for analyzing spatial networks. We demonstrate that our methods are able to capture meaningful quantities, with specifics that depend on context, in spatial networks and thereby provide useful insights into the structure of those networks, including a novel approach for characterizing them based on their topological structures. We illustrate these ideas with examples of synthetic networks and dynamics on them, street networks in cities, snowflakes, and webs spun by spiders under the influence of various psychotropic substances. -
PersGNN: Applying Topological Data Analysis and Geometric Deep Learning to Structure-Based Protein Function Prediction (2020)
Nicolas Swenson, Aditi S. Krishnapriyan, Aydin Buluc, Dmitriy Morozov, Katherine YelickAbstract
Understanding protein structure-function relationships is a key challenge in computational biology, with applications across the biotechnology and pharmaceutical industries. While it is known that protein structure directly impacts protein function, many functional prediction tasks use only protein sequence. In this work, we isolate protein structure to make functional annotations for proteins in the Protein Data Bank in order to study the expressiveness of different structure-based prediction schemes. We present PersGNN - an end-to-end trainable deep learning model that combines graph representation learning with topological data analysis to capture a complex set of both local and global structural features. While variations of these techniques have been successfully applied to proteins before, we demonstrate that our hybridized approach, PersGNN, outperforms either method on its own as well as a baseline neural network that learns from the same information. PersGNN achieves a 9.3% boost in area under the precision recall curve (AUPR) compared to the best individual model, as well as high F1 scores across different gene ontology categories, indicating the transferability of this approach. -
Determining Structural Properties of Artificial Neural Networks Using Algebraic Topology (2021)
David Pérez Fernández, Asier Gutiérrez-Fandiño, Jordi Armengol-Estapé, Marta VillegasAbstract
Artificial Neural Networks (ANNs) are widely used for approximating complex functions. The process that is usually followed to define the most appropriate architecture for an ANN given a specific function is mostly empirical. Once this architecture has been defined, weights are usually optimized according to the error function. On the other hand, we observe that ANNs can be represented as graphs and their topological 'fingerprints' can be obtained using Persistent Homology (PH). In this paper, we describe a proposal focused on designing more principled architecture search procedures. To do this, different architectures for solving problems related to a heterogeneous set of datasets have been analyzed. The results of the evaluation corroborate that PH effectively characterizes the ANN invariants: when ANN density (layers and neurons) or sample feeding order is the only difference, PH topological invariants appear; in the opposite direction in different sub-problems (i.e. different labels), PH varies. This approach based on topological analysis helps towards the goal of designing more principled architecture search procedures and having a better understanding of ANNs. -
The Topology of Higher-Order Complexes Associated With Brain Hubs in Human Connectomes (2020)
Miroslav Andjelković, Bosiljka Tadić, Roderick MelnikAbstract
Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supporting integrated brain function. Here, we study the structure of simplicial complexes attached to eight global hubs in the female and male connectomes and identify the core networks among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and Thalamus-Proper in the left and right cerebral hemisphere) are the highest-ranking according to their topological dimension, defined as the number of simplexes of all orders in which the node participates. Furthermore, we analyse the weight-dependent heterogeneity of simplexes. We demonstrate changes in the structure of identified core networks and topological entropy when the threshold weight is gradually increased. These results highlight the role of higher-order interactions in human brain networks and provide additional evidence for (dis)similarity between the female and male connectomes. -
Molecular Phenotyping Using Networks, Diffusion, and Topology: Soft Tissue Sarcoma (2019)
James C. Mathews, Maryam Pouryahya, Caroline Moosmüller, Yannis G. Kevrekidis, Joseph O. Deasy, Allen TannenbaumAbstract
Many biological datasets are high-dimensional yet manifest an underlying order. In this paper, we describe an unsupervised data analysis methodology that operates in the setting of a multivariate dataset and a network which expresses influence between the variables of the given set. The technique involves network geometry employing the Wasserstein distance, global spectral analysis in the form of diffusion maps, and topological data analysis using the Mapper algorithm. The prototypical application is to gene expression profiles obtained from RNA-Seq experiments on a collection of tissue samples, considering only genes whose protein products participate in a known pathway or network of interest. Employing the technique, we discern several coherent states or signatures displayed by the gene expression profiles of the sarcomas in the Cancer Genome Atlas along the TP53 (p53) signaling network. The signatures substantially recover the leiomyosarcoma, dedifferentiated liposarcoma (DDLPS), and synovial sarcoma histological subtype diagnoses, and they also include a new signature defined by activation and inactivation of about a dozen genes, including activation of serine endopeptidase inhibitor SERPINE1 and inactivation of TP53-family tumor suppressor gene TP73. -
When Remote Sensing Meets Topological Data Analysis (2018)
Ludovic DuponchelAbstract
Author Summary: Hyperspectral remote sensing plays an increasingly important role in many scientific domains and everyday life problems. Indeed, this imaging concept ends up in applications as varied as catching tax-evaders red-handed by locating new construction and building alterations, searching for aircraft and saving lives after fatal crashes, detecting oil spills for marine life and environmental preservation, spying on enemies with reconnaissance satellites, watching algae grow as an indicator of environmental health, forecasting weather to warn about natural disasters and much more. From an instrumental point of view, we can say that the actual spectrometers have rather good characteristics, even if we can always increase spatial resolution and spectral range. In order to extract ever more information from such experiments and develop new applications, we must, therefore, propose multivariate data analysis tools able to capture the shape of data sets and their specific features. Nevertheless, actual methods often impose a data model which implicitly defines the geometry of the data set. The aim of the paper is thus to introduce the concept of topological data analysis in the framework of remote sensing, making no assumptions about the global shape of the data set, but also allowing the capture of its local features. -
Path Homologies of Motifs and Temporal Network Representations (2022)
Samir Chowdhury, Steve Huntsman, Matvey YutinAbstract
Path homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology. -
Topological Gene Expression Networks Recapitulate Brain Anatomy and Function (2019)
Alice Patania, Pierluigi Selvaggi, Mattia Veronese, Ottavia Dipasquale, Paul Expert, Giovanni PetriAbstract
Understanding how gene expression translates to and affects human behavior is one of the ultimate goals of neuroscience. In this paper, we present a pipeline based on Mapper, a topological simplification tool, to analyze gene co-expression data. We first validate the method by reproducing key results from the literature on the Allen Human Brain Atlas and the correlations between resting-state fMRI and gene co-expression maps. We then analyze a dopamine-related gene set and find that co-expression networks produced by Mapper return a structure that matches the well-known anatomy of the dopaminergic pathway. Our results suggest that network based descriptions can be a powerful tool to explore the relationships between genetic pathways and their association with brain function and its perturbation due to illness and/or pharmacological challenges., In this paper, we described a gene co-expression analysis pipeline that produces networks that we show to be closely related to either brain function and to neurotransmitter pathways. Our results suggest that this pipeline could be developed into a platform enabling the exploration of the effects of physiological and pathological alterations to specific gene sets, including profiling drugs effects. -
Exploring the Geometry and Topology of Neural Network Loss Landscapes (2022)
Stefan Horoi, Jessie Huang, Bastian Rieck, Guillaume Lajoie, Guy Wolf, Smita KrishnaswamyAbstract
Recent work has established clear links between the generalization performance of trained neural networks and the geometry of their loss landscape near the local minima to which they converge. This suggests that qualitative and quantitative examination of the loss landscape geometry could yield insights about neural network generalization performance during training. To this end, researchers have proposed visualizing the loss landscape through the use of simple dimensionality reduction techniques. However, such visualization methods have been limited by their linear nature and only capture features in one or two dimensions, thus restricting sampling of the loss landscape to lines or planes. Here, we expand and improve upon these in three ways. First, we present a novel “jump and retrain” procedure for sampling relevant portions of the loss landscape. We show that the resulting sampled data holds more meaningful information about the network’s ability to generalize. Next, we show that non-linear dimensionality reduction of the jump and retrain trajectories via PHATE, a trajectory and manifold-preserving method, allows us to visualize differences between networks that are generalizing well vs poorly. Finally, we combine PHATE trajectories with a computational homology characterization to quantify trajectory differences. -
Atom-Specific Persistent Homology and Its Application to Protein Flexibility Analysis (2020)
David Bramer, Guo-Wei WeiAbstract
Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely employed for the analysis of atomic properties, such as biomolecular flexibility analysis or B-factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B-factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information in complex macromolecules. -
Go With the Flow? A Large-Scale Analysis of Health Care Delivery Networks in the United States Using Hodge Theory (2021)
Thomas Gebhart, Xiaojun Fu, Russell J. FunkAbstract
Health care delivery is a collaborative process, requiring close coordination among networks of providers with specialized expertise. Yet in the United States, care is often spread across multiple disconnected providers (e.g., primary care physicians, specialists), leading to fragmented care delivery networks, and contributing to higher costs and lower quality. While this problem is well known, there are relatively few quantitative tools available for characterizing the dynamics of care delivery networks at scale, thereby inhibiting deeper understanding of care fragmentation and efforts to address it. In this, study, we conduct a large-scale analysis of care delivery networks across the United States using the discrete Hodge decomposition, an emerging method of topological data analysis. Using this technique, we decompose networks of patient flows among physicians into three orthogonal subspaces: gradient (acyclic flow), harmonic (global cyclic flow), and curl (local cyclic flow). We document substantial variation in the relative importance of each subspace, suggesting that there may be systematic differences in the organization of care delivery networks across health care markets. Moreover, we find that the relative importance of each subspace is predictive of local care cost and quality, with outcomes tending to be better with greater curl flow and worse with greater harmonic flow. -
Tracking Resilience to Infections by Mapping Disease Space (2016)
Brenda Y. Torres, Jose Henrique M. Oliveira, Ann Thomas Tate, Poonam Rath, Katherine Cumnock, David S. SchneiderAbstract
Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels. -
WDR76 Co-Localizes With Heterochromatin Related Proteins and Rapidly Responds to DNA Damage (2016)
Joshua M. Gilmore, Mihaela E. Sardiu, Brad D. Groppe, Janet L. Thornton, Xingyu Liu, Gerald Dayebgadoh, Charles A. Banks, Brian D. Slaughter, Jay R. Unruh, Jerry L. Workman, Laurence Florens, Michael P. WashburnAbstract
Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. -
Representability of Algebraic Topology for Biomolecules in Machine Learning Based Scoring and Virtual Screening (2018)
Zixuan Cang, Lin Mu, Guo-Wei WeiAbstract
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination. -
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images (2020)
Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew Buman, Pavan TuragaAbstract
Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustness topological representations provide against different types of physical nuisance variables seen in real-world data, such as view-point, illumination, and more. However, key bottlenecks to their large scale adoption are computational expenditure and difficulty incorporating them in a differentiable architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a novel one-step approach to generate PIs directly from the input data. We design two separate convolutional neural network architectures, one designed to take in multi-variate time series signals as input and another that accepts multi-channel images as input. We call these networks Signal PI-Net and Image PINet respectively. To the best of our knowledge, we are the first to propose the use of deep learning for computing topological features directly from data. We explore the use of the proposed PI-Net architectures on two applications: human activity recognition using tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of PIs in supervised deep learning architectures and speed up of several orders of magnitude for extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net. -
Homological Scaffolds of Brain Functional Networks (2014)
G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, F. VaccarinoAbstract
Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci.10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. -
The Growing Topology of the C. Elegans Connectome (2020)
Alec Helm, Ann S. Blevins, Danielle S. BassettAbstract
Probing the developing neural circuitry in Caenorhabditis elegans has enhanced our understanding of nervous systems. The C. elegans connectome, like those of other species, is characterized by a rich club of densely connected neurons embedded within a small-world architecture. This organization of neuronal connections, captured by quantitative network statistics, provides insight into the system's capacity to perform integrative computations. Yet these network measures are limited in their ability to detect weakly connected motifs, such as topological cavities, that may support the systems capacity to perform segregated computations. We address this limitation by using persistent homology to track the evolution of topological cavities in the growing C. elegans connectome throughout neural development, and assess the degree to which the growing connectomes topology is resistant to biological noise. We show that the developing connectome topology is both relatively robust to changes in neuron birth times and not captured by similar growth models. Additionally, we quantify the consequence of a neurons specific birth time and ask if this metric tracks other biological properties of neurons. Our results suggest that the connectomes growing topology is a robust feature of the developing connectome that is distinct from other network properties, and that the growing topology is particularly sensitive to the exact birth times of a small set of predominantly motor neurons. By utilizing novel measurements that track biological features, we anticipate that our study will be helpful in the construction of more accurate models of neuronal development in C. elegans -
Community Structures in Simplicial Complexes: An Application to Wildlife Corridor Designing in Central India -- Eastern Ghats Landscape Complex, India (2020)
Saurabh Shanu, Shashankaditya Upadhyay, Arijit Roy, Raghunandan Chundawat, Sudeepto BhattacharyaAbstract
The concept of simplicial complex from Algebraic Topology is applied to understand and model the flow of genetic information, processes and organisms between the areas of unimpaired habitats to design a network of wildlife corridors for Tigers (Panthera Tigris Tigris) in Central India Eastern Ghats landscape complex. The work extends and improves on a previous work that has made use of the concept of minimum spanning tree obtained from the weighted graph in the focal landscape, which suggested a viable corridor network for the tiger population of the Protected Areas (PAs) in the landscape complex. Centralities of the network identify the habitat patches and the critical parameters that are central to the process of tiger movement across the network. We extend the concept of vertex centrality to that of the simplicial centrality yielding inter-vertices adjacency and connection. As a result, the ecological information propagates expeditiously and even on a local scale in these networks representing a well-integrated and self-explanatory model as a community structure. A simplicial complex network based on the network centralities calculated in the landscape matrix presents a tiger corridor network in the landscape complex that is proposed to correspond better to reality than the previously proposed model. Because of the aforementioned functional and structural properties of the network, the work proposes an ecological network of corridors for the most tenable usage by the tiger populations both in the PAs and outside the PAs in the focal landscape. -
The Importance of the Whole: Topological Data Analysis for the Network Neuroscientist (2019)
Ann E. Sizemore, Jennifer E. Phillips-Cremins, Robert Ghrist, Danielle S. BassettAbstract
Data analysis techniques from network science have fundamentally improved our understanding of neural systems and the complex behaviors that they support. Yet the restriction of network techniques to the study of pairwise interactions prevents us from taking into account intrinsic topological features such as cavities that may be crucial for system function. To detect and quantify these topological features, we must turn to algebro-topological methods that encode data as a simplicial complex built from sets of interacting nodes called simplices. We then use the relations between simplices to expose cavities within the complex, thereby summarizing its topological features. Here we provide an introduction to persistent homology, a fundamental method from applied topology that builds a global descriptor of system structure by chronicling the evolution of cavities as we move through a combinatorial object such as a weighted network. We detail the mathematics and perform demonstrative calculations on the mouse structural connectome, synapses in C. elegans, and genomic interaction data. Finally, we suggest avenues for future work and highlight new advances in mathematics ready for use in neural systems., For the network neuroscientist, this exposition aims to communicate both the mathematics and the advantages of using tools from applied topology for the study of neural systems. Using data from the mouse connectome, electrical and chemical synapses in C. elegans, and chromatin interaction data, we offer example computations and applications to further demonstrate the power of topological data analysis in neuroscience. Finally, we expose the reader to novel developments in applied topology and relate these developments to current questions and methodological difficulties in network neuroscience. -
Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures (2012)
B. Rieck, H. Mara, H. LeitteAbstract
The extraction of significant structures in arbitrary high-dimensional data sets is a challenging task. Moreover, classifying data points as noise in order to reduce a data set bears special relevance for many application domains. Standard methods such as clustering serve to reduce problem complexity by providing the user with classes of similar entities. However, they usually do not highlight relations between different entities and require a stopping criterion, e.g. the number of clusters to be detected. In this paper, we present a visualization pipeline based on recent advancements in algebraic topology. More precisely, we employ methods from persistent homology that enable topological data analysis on high-dimensional data sets. Our pipeline inherently copes with noisy data and data sets of arbitrary dimensions. It extracts central structures of a data set in a hierarchical manner by using a persistence-based filtering algorithm that is theoretically well-founded. We furthermore introduce persistence rings, a novel visualization technique for a class of topological features-the persistence intervals-of large data sets. Persistence rings provide a unique topological signature of a data set, which helps in recognizing similarities. In addition, we provide interactive visualization techniques that assist the user in evaluating the parameter space of our method in order to extract relevant structures. We describe and evaluate our analysis pipeline by means of two very distinct classes of data sets: First, a class of synthetic data sets containing topological objects is employed to highlight the interaction capabilities of our method. Second, in order to affirm the utility of our technique, we analyse a class of high-dimensional real-world data sets arising from current research in cultural heritage. -
MRI and Biomechanics Multidimensional Data Analysis Reveals R2 -R1ρ as an Early Predictor of Cartilage Lesion Progression in Knee Osteoarthritis (2017)
Valentina Pedoia, Jenny Haefeli, Kazuhito Morioka, Hsiang-Ling Teng, Lorenzo Nardo, Richard B. Souza, Adam R. Ferguson, Sharmila MajumdarAbstract
PURPOSE: To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA. MATERIALS AND METHODS: We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2 -R1ρ (1/T2 -1/T1ρ ) acquired at 3T and whole-organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov-Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing. RESULTS: The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10-8 , T1ρ medial tibia P = 1.05*10-5 ), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10-4 ) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2 -R1ρ and the longitudinal progression of cartilage lesions. CONCLUSION: The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2 -R1ρ may be an imaging biomarker for early OA. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78-90. -
Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)
Woojin Kim, Facundo MemoliAbstract
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik. -
Novel Production Prediction Model of Gasoline Production Processes for Energy Saving and Economic Increasing Based on AM-GRU Integrating the UMAP Algorithm (2023)
Jintao Liu, Liangchao Chen, Wei Xu, Mingfei Feng, Yongming Han, Tao Xia, Zhiqiang GengAbstract
Gasoline, as an extremely important petroleum product, is of great significance to ensure people's living standards and maintain national energy security. In the actual gasoline industrial production environment, the point information collected by industrial devices usually has the characteristics of high dimension, high noise and time series because of the instability of manual operation and equipment operation. Therefore, it is difficult to use the traditional method to predict and optimize gasoline production. In this paper, a novel production prediction model using an attention mechanism (AM) based gated recurrent unit (GRU) (AM-GRU) integrating the uniform manifold approximation and projection (UMAP) is proposed. The data collected in the industrial plant are processed by the box plot to remove the data outside the quartile. Then, the UMAP is used to remove the strong correlation between the data, which can improve the running speed and the performance of the AM-GRU. Compared with the existing time series data prediction method, the superiority of the AM-GRU is verified based on University of California Irvine (UCI) benchmark datasets. Finally, the production prediction model of actual complex gasoline production processes for energy saving and economic increasing based on the proposed method is built. The experiment results show that compared with other time series data prediction models, the proposed model has better stability and higher accuracy with reaching 0.4171, 0.9969, 0.2538 and 0.5038 in terms of the mean squared error, the average absolute accuracy, the mean squared error and the root mean square error. Moreover, according to the optimal scheme of the raw material, the inefficiency production points can be expected to increase about 0.69 tons of the gasoline yield and between about \$645.1 and \$925.6 of economic benefits of industrial production. -
Using Multidimensional Topological Data Analysis to Identify Traits of Hip Osteoarthritis (2018)
Jasmine Rossi‐deVries, Valentina Pedoia, Michael A. Samaan, Adam R. Ferguson, Richard B. Souza, Sharmila MajumdarAbstract
Background Osteoarthritis (OA) is a multifaceted disease with many variables affecting diagnosis and progression. Topological data analysis (TDA) is a state-of-the-art big data analytics tool that can combine all variables into multidimensional space. TDA is used to simultaneously analyze imaging and gait analysis techniques. Purpose To identify biochemical and biomechanical biomarkers able to classify different disease progression phenotypes in subjects with and without radiographic signs of hip OA. Study Type Longitudinal study for comparison of progressive and nonprogressive subjects. Population In all, 102 subjects with and without radiographic signs of hip osteoarthritis. Field Strength/Sequence 3T, SPGR 3D MAPSS T1ρ/T2, intermediate-weighted fat-suppressed fast spin-echo (FSE). Assessment Multidimensional data analysis including cartilage composition, bone shape, Kellgren–Lawrence (KL) classification of osteoarthritis, scoring hip osteoarthritis with MRI (SHOMRI), hip disability and osteoarthritis outcome score (HOOS). Statistical Tests Analysis done using TDA, Kolmogorov–Smirnov (KS) testing, and Benjamini-Hochberg to rank P-value results to correct for multiple comparisons. Results Subjects in the later stages of the disease had an increased SHOMRI score (P \textless 0.0001), increased KL (P = 0.0012), and older age (P \textless 0.0001). Subjects in the healthier group showed intact cartilage and less pain. Subjects found between these two groups had a range of symptoms. Analysis of this subgroup identified knee biomechanics (P \textless 0.0001) as an initial marker of the disease that is noticeable before the morphological progression and degeneration. Further analysis of an OA subgroup with femoroacetabular impingement (FAI) showed anterior labral tears to be the most significant marker (P = 0.0017) between those FAI subjects with and without OA symptoms. Data Conclusion The data-driven analysis obtained with TDA proposes new phenotypes of these subjects that partially overlap with the radiographic-based classical disease status classification and also shows the potential for further examination of an early onset biomechanical intervention. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1046–1058. -
Weighted Persistent Homology for Osmolyte Molecular Aggregation and Hydrogen-Bonding Network Analysis (2020)
D. Vijay Anand, Zhenyu Meng, Kelin Xia, Yuguang MuAbstract
It has long been observed that trimethylamine N-oxide (TMAO) and urea demonstrate dramatically different properties in a protein folding process. Even with the enormous theoretical and experimental research work on these two osmolytes, various aspects of their underlying mechanisms still remain largely elusive. In this paper, we propose to use the weighted persistent homology to systematically study the osmolytes molecular aggregation and their hydrogen-bonding network from a local topological perspective. We consider two weighted models, i.e., localized persistent homology (LPH) and interactive persistent homology (IPH). Boltzmann persistent entropy (BPE) is proposed to quantitatively characterize the topological features from LPH and IPH, together with persistent Betti number (PBN). More specifically, from the localized persistent homology models, we have found that TMAO and urea have very different local topology. TMAO is found to exhibit a local network structure. With the concentration increase, the circle elements in these networks show a clear increase in their total numbers and a decrease in their relative sizes. In contrast, urea shows two types of local topological patterns, i.e., local clusters around 6 Å and a few global circle elements at around 12 Å. From the interactive persistent homology models, it has been found that our persistent radial distribution function (PRDF) from the global-scale IPH has same physical properties as the traditional radial distribution function. Moreover, PRDFs from the local-scale IPH can also be generated and used to characterize the local interaction information. Other than the clear difference of the first peak value of PRDFs at filtration size 4 Å, TMAO and urea also shows very different behaviors at the second peak region from filtration size 5 Å to 10 Å. These differences are also reflected in the PBNs and BPEs of the local-scale IPH. These localized topological information has never been revealed before. Since graphs can be transferred into simplicial complexes by the clique complex, our weighted persistent homology models can be used in the analysis of various networks and graphs from any molecular structures and aggregation systems. -
Uncovering Precision Phenotype-Biomarker Associations in Traumatic Brain Injury Using Topological Data Analysis (2017)
Jessica L. Nielson, Shelly R. Cooper, John K. Yue, Marco D. Sorani, Tomoo Inoue, Esther L. Yuh, Pratik Mukherjee, Tanya C. Petrossian, Jesse Paquette, Pek Y. Lum, Gunnar E. Carlsson, Mary J. Vassar, Hester F. Lingsma, Wayne A. Gordon, Alex B. Valadka, David O. Okonkwo, Geoffrey T. Manley, Adam R. Ferguson, Track-Tbi InvestigatorsAbstract
Background Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. Trial Registration ClinicalTrials.gov Identifier NCT01565551 -
Persistent Homology Analysis of Ion Aggregations and Hydrogen-Bonding Networks (2018)
Kelin XiaAbstract
Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models.