🍩 Database of Original & Non-Theoretical Uses of Topology
(found 4 matches in 0.001181s)
-
-
Use of Topological Data Analysis in Motor Intention Based Brain-Computer Interfaces (2018)
Fatih Altindis, Bulent Yilmaz, Sergey Borisenok, Kutay Icoz -
Topological Data Analysis for Arrhythmia Detection Through Modular Neural Networks (2020)
Meryll Dindin, Yuhei Umeda, Frederic ChazalAbstract
This paper presents an innovative and generic deep learning approach to monitor heart conditions from ECG signals. We focus our attention on both the detection and classification of abnormal heartbeats, known as arrhythmia. We strongly insist on generalization throughout the construction of a shallow deep-learning model that turns out to be effective for new unseen patient. The novelty of our approach relies on the use of topological data analysis to deal with individual differences. We show that our structure reaches the performances of the state-of-the-art methods for both arrhythmia detection and classification. -
Geometric Feature Performance Under Downsampling for EEG Classification Tasks (2021)
Bryan Bischof, Eric BunchAbstract
We experimentally investigate a collection of feature engineering pipelines for use with a CNN for classifying eyes-open or eyes-closed from electroencephalogram (EEG) time-series from the Bonn dataset. Using the Takens' embedding--a geometric representation of time-series--we construct simplicial complexes from EEG data. We then compare \$\epsilon\$-series of Betti-numbers and \$\epsilon\$-series of graph spectra (a novel construction)--two topological invariants of the latent geometry from these complexes--to raw time series of the EEG to fill in a gap in the literature for benchmarking. These methods, inspired by Topological Data Analysis, are used for feature engineering to capture local geometry of the time-series. Additionally, we test these feature pipelines' robustness to downsampling and data reduction. This paper seeks to establish clearer expectations for both time-series classification via geometric features, and how CNNs for time-series respond to data of degraded resolution.