🍩 Database of Original & Non-Theoretical Uses of Topology

(found 44 matches in 0.011062s)
  1. Analyzing Collective Motion With Machine Learning and Topology (2019)

    Dhananjay Bhaskar, Angelika Manhart, Jesse Milzman, John T. Nardini, Kathleen M. Storey, Chad M. Topaz, Lori Ziegelmeier
    Abstract We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters.
  2. Diverse 3D Cellular Patterns Underlie the Development of Cardamine Hirsuta and Arabidopsis Thaliana Ovules (2023)

    Tejasvinee Atul Mody, Alexander Rolle, Nico Stucki, Fabian Roll, Ulrich Bauer, Kay Schneitz
    Abstract A fundamental question in biology is how organ morphogenesis comes about. The ovules of Arabidopsis thaliana have been established as a successful model to study numerous aspects of tissue morphogenesis; however, little is known regarding the relative contributions and dynamics of differential tissue and cellular growth and architecture in establishing ovule morphogenesis in different species. To address this issue, we generated a 3D digital atlas of Cardamine hirsuta ovule development with full cellular resolution. We combined quantitative comparative morphometrics and topological analysis to explore similarities and differences in the 3D cellular architectures underlying ovule development of the two species. We discovered that they show diversity in the way the three radial cell layers of the primordium contribute to its growth, in the formation of a new cell layer in the inner integument and, in certain cases, in the topological properties of the 3D cell architectures of homologous tissues despite their similar shape. Our work demonstrates the power of comparative 3D cellular morphometry and the importance of internal tissues and their cellular architecture in organ morphogenesis. Summary Statement Quantitative morphometric comparison of 3D digital ovules at full cellular resolution reveals diversity in internal 3D cellular architectures between similarly shaped ovules of Cardamine hirsuta and Arabidopsis thaliana.
  3. A Topological Approach to Selecting Models of Biological Experiments (2019)

    M. Ulmer, Lori Ziegelmeier, Chad M. Topaz
    Abstract We use topological data analysis as a tool to analyze the fit of mathematical models to experimental data. This study is built on data obtained from motion tracking groups of aphids in [Nilsen et al., PLOS One, 2013] and two random walk models that were proposed to describe the data. One model incorporates social interactions between the insects via a functional dependence on an aphid’s distance to its nearest neighbor. The second model is a control model that ignores this dependence. We compare data from each model to data from experiment by performing statistical tests based on three different sets of measures. First, we use time series of order parameters commonly used in collective motion studies. These order parameters measure the overall polarization and angular momentum of the group, and do not rely on a priori knowledge of the models that produced the data. Second, we use order parameter time series that do rely on a priori knowledge, namely average distance to nearest neighbor and percentage of aphids moving. Third, we use computational persistent homology to calculate topological signatures of the data. Analysis of the a priori order parameters indicates that the interactive model better describes the experimental data than the control model does. The topological approach performs as well as these a priori order parameters and better than the other order parameters, suggesting the utility of the topological approach in the absence of specific knowledge of mechanisms underlying the data.
  4. Gene Expression Data Classification Using Topology and Machine Learning Models (2022)

    Tamal K. Dey, Sayan Mandal, Soham Mukherjee
    Abstract Interpretation of high-throughput gene expression data continues to require mathematical tools in data analysis that recognizes the shape of the data in high dimensions. Topological data analysis (TDA) has recently been successful in extracting robust features in several applications dealing with high dimensional constructs. In this work, we utilize some recent developments in TDA to curate gene expression data. Our work differs from the predecessors in two aspects: (1) Traditional TDA pipelines use topological signatures called barcodes to enhance feature vectors which are used for classification. In contrast, this work involves curating relevant features to obtain somewhat better representatives with the help of TDA. This representatives of the entire data facilitates better comprehension of the phenotype labels. (2) Most of the earlier works employ barcodes obtained using topological summaries as fingerprints for the data. Even though they are stable signatures, there exists no direct mapping between the data and said barcodes.
  5. Topological Data Analysis for Genomics and Evolution: Topology in Biology (2019)

    Raul Rabadan, Andrew J. Blumberg
    Abstract Biology has entered the age of Big Data. A technical revolution has transformed the field, and extracting meaningful information from large biological data sets is now a central methodological challenge. Algebraic topology is a well-established branch of pure mathematics that studies qualitative descriptors of the shape of geometric objects. It aims to reduce comparisons of shape to a comparison of algebraic invariants, such as numbers, which are typically easier to work with. Topological data analysis is a rapidly developing subfield that leverages the tools of algebraic topology to provide robust multiscale analysis of data sets. This book introduces the central ideas and techniques of topological data analysis and its specific applications to biology, including the evolution of viruses, bacteria and humans, genomics of cancer, and single cell characterization of developmental processes. Bridging two disciplines, the book is for researchers and graduate students in genomics and evolutionary biology as well as mathematicians interested in applied topology.
  6. Model Comparison via Simplicial Complexes and Persistent Homology (2020)

    Sean T. Vittadello, Michael P. H. Stumpf
    Abstract In many scientific and technological contexts we have only a poor understanding of the structure and details of appropriate mathematical models. We often need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. But there is a lack of rigorous methods to compare different models \emph\a priori\. Here we develop and illustrate two such approaches that allow us to compare model structures in a systematic way. Using well-developed and understood concepts from simplicial geometry we are able to define a distance based on the persistent homology applied to the simplicial complexes that captures the model structure. In this way we can identify shared topological features of different models. We then expand this, and move from a distance between simplicial complexes to studying equivalences between models in order to determine their functional relatedness.
  7. Dissecting Glial Scar Formation by Spatial Point Pattern and Topological Data Analysis (2024)

    Daniel Manrique-Castano, Dhananjay Bhaskar, Ayman ElAli
    Abstract Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.

    Community Resources

  8. Persistent Homology Analysis of Protein Structure, Flexibility, and Folding (2014)

    Kelin Xia, Guo-Wei Wei
    Abstract SUMMARYProteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics, and transport is one of the most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification, and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. On the basis of the correlation between protein compactness, rigidity, and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix-based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology–function relationship of proteins. Copyright © 2014 John Wiley & Sons, Ltd.
  9. Multiresolution Persistent Homology for Excessively Large Biomolecular Datasets (2015)

    Kelin Xia, Zhixiong Zhao, Guo-Wei Wei
    Abstract Although persistent homology has emerged as a promising tool for the topological simplification of complex data, it is computationally intractable for large datasets. We introduce multiresolution persistent homology to handle excessively large datasets. We match the resolution with the scale of interest so as to represent large scale datasets with appropriate resolution. We utilize flexibility-rigidity index to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution of the rigidity density, we are able to focus the topological lens on the scale of interest. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA molecules. In particular, the topological persistence of a virus capsid with 273 780 atoms is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks, and graphs.
  10. Topological Descriptors for Coral Reef Resilience Using a Stochastic Spatial Model (2022)

    Robert A. McDonald, Rosanna Neuhausler, Martin Robinson, Laurel G. Larsen, Heather A. Harrington, Maria Bruna
    Abstract A complex interplay between species governs the evolution of spatial patterns in ecology. An open problem in the biological sciences is characterizing spatio-temporal data and understanding how changes at the local scale affect global dynamics/behavior. We present a toolkit of multiscale methods and use them to analyze coral reef resilience and dynamics.Here, we extend a well-studied temporal mathematical model of coral reef dynamics to include stochastic and spatial interactions and then generate data to study different ecological scenarios. We present descriptors to characterize patterns in heterogeneous spatio-temporal data surpassing spatially averaged measures. We apply these descriptors to simulated coral data and demonstrate the utility of two topological data analysis techniques--persistent homology and zigzag persistence--for characterizing the spatiotemporal evolution of reefs and generating insight into mechanisms of reef resilience. We show that the introduction of local competition between species leads to the appearance of coral clusters in the reef. Furthermore, we use our analyses to distinguish the temporal dynamics that stem from different initial configurations of coral, showing that the neighborhood composition of coral sites determines their long-term survival. Finally, we use zigzag persistence to quantify spatial behavior in the metastable regime as the level of fish grazing on algae varies and determine which spatial configurations protect coral from extinction in different environments.
  11. Determining Clinically Relevant Features in Cytometry Data Using Persistent Homology (2022)

    Soham Mukherjee, Darren Wethington, Tamal K. Dey, Jayajit Das
    Abstract Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as ‘elbows’. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools.

    Community Resources

  12. Characterising Epithelial Tissues Using Persistent Entropy (2019)

    N. Atienza, L. M. Escudero, M. J. Jimenez, M. Soriano-Trigueros
    Abstract In this paper, we apply persistent entropy, a novel topological statistic, for characterization of images of epithelial tissues. We have found out that persistent entropy is able to summarize topological and geometric information encoded by \$\$\alpha \$\$α-complexes and persistent homology. After using some statistical tests, we can guarantee the existence of significant differences in the studied tissues.
  13. Topological Data Analysis Quantifies Biological Nano-Structure From Single Molecule Localization Microscopy (2020)

    Jeremy A. Pike, Abdullah O. Khan, Chiara Pallini, Steven G. Thomas, Markus Mund, Jonas Ries, Natalie S. Poulter, Iain B. Styles
    Abstract AbstractMotivation. Localization microscopy data is represented by a set of spatial coordinates, each corresponding to a single detection, that form a point cl
  14. Using Persistent Homology to Reveal Hidden Information in Neural Data (2015)

    Gard Spreemann, Benjamin Dunn, Magnus Bakke Botnan, Nils A. Baas
    Abstract We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known stimuli that govern neuron activity, and the corresponding state of the animal throughout the experiment performed. Using a generalized linear model for neuron activity and simple assumptions on the effects of the external stimuli, we infer away any contribution to the observed spike trains by the candidate stimuli. Persistent homology then reveals useful information about any further, unknown, covariates.
  15. Structural Insight Into RNA Hairpin Folding Intermediates (2008)

    Gregory R. Bowman, Xuhui Huang, Yuan Yao, Jian Sun, Gunnar Carlsson, Leonidas J. Guibas, Vijay S. Pande
    Abstract , Hairpins are a ubiquitous secondary structure motif in RNA molecules. Despite their simple structure, there is some debate over whether they fold in a two-state or multi-state manner. We have studied the folding of a small tetraloop hairpin using a serial version of replica exchange molecular dynamics on a distributed computing environment. On the basis of these simulations, we have identified a number of intermediates that are consistent with experimental results. We also find that folding is not simply the reverse of high-temperature unfolding and suggest that this may be a general feature of biomolecular folding.
  16. Homological Scaffold via Minimal Homology Bases (2021)

    Marco Guerra, Alessandro De Gregorio, Ulderico Fugacci, Giovanni Petri, Francesco Vaccarino
    Abstract The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks.
  17. Fruit Flies and Moduli: Interactions Between Biology and Mathematics (2015)

    Ezra Miller
    Abstract Possibilities for using geometry and topology to analyze statistical problems in biology raise a host of novel questions in geometry, probability, algebra, and combinatorics that demonstrate the power of biology to influence the future of pure mathematics. This expository article is a tour through some biological explorations and their mathematical ramifications. The article starts with evolution of novel topological features in wing veins of fruit flies, which are quantified using the algebraic structure of multiparameter persistent homology. The statistical issues involved highlight mathematical implications of sampling from moduli spaces. These lead to geometric probability on stratified spaces, including the sticky phenomenon for Frechet means and the origin of this mathematical area in the reconstruction of phylogenetic trees.
  18. HiDeF: Identifying Persistent Structures in Multiscale ‘Omics Data (2021)

    Fan Zheng, She Zhang, Christopher Churas, Dexter Pratt, Ivet Bahar, Trey Ideker
    Abstract In any ‘omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities revealed from protein networks can vary widely in sizes depending on the method. Here, we use the concept of persistent homology, drawn from mathematical topology, to identify robust structures in data at all scales simultaneously. Application to mouse single-cell transcriptomes significantly expands the catalog of identified cell types, while analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method, HiDeF, is available via Python and Cytoscape.
  19. Tree Decomposition of Reeb Graphs, Parametrized Complexity, and Applications to Phylogenetics (2020)

    Anastasios Stefanou
    Abstract Inspired by the interval decomposition of persistence modules and the extended Newick format of phylogenetic networks, we show that, inside the larger category of partially ordered Reeb graphs, every Reeb graph with n leaves and first Betti number s, can be identified with a coproduct of at most \$\$2\textasciicircums\$\$2s partially ordered trees with \$\$(n + s)\$\$(n+s) leaves. Reeb graphs are therefore classified up to isomorphism by their tree-decomposition. An implication of this result, is that the isomorphism problem for Reeb graphs is fixed parameter tractable when the parameter is the first Betti number. We propose partially ordered Reeb graphs as a model for time consistent phylogenetic networks and propose a certain Hausdorff distance as a metric on these structures.
  20. Topological Data Analysis of C. Elegans Locomotion and Behavior (2021)

    Ashleigh Thomas, Kathleen Bates, Alex Elchesen, Iryna Hartsock, Hang Lu, Peter Bubenik
    Abstract Video of nematodes/roundworms was analyzed using persistent homology to study locomotion and behavior. In each frame, an organism's body posture was represented by a high-dimensional vector. By concatenating points in fixed-duration segments of this time series, we created a sliding window embedding (sometimes called a time delay embedding) where each point corresponds to a sequence of postures of an organism. Persistent homology on the points in this time series detected behaviors and comparisons of these persistent homology computations detected variation in their corresponding behaviors. We used average persistence landscapes and machine learning techniques to study changes in locomotion and behavior in varying environments.
  21. Hyperparameter Optimization of Topological Features for Machine Learning Applications (2019)

    Francis Motta, Christopher Tralie, Rossella Bedini, Fabiano Bini, Gilberto Bini, Hamed Eramian, Marcio Gameiro, Steve Haase, Hugh Haddox, John Harer, Nick Leiby, Franco Marinozzi, Scott Novotney, Gabe Rocklin, Jed Singer, Devin Strickland, Matt Vaughn
    Abstract This paper describes a general pipeline for generating optimal vector representations of topological features of data for use with machine learning algorithms. This pipeline can be viewed as a costly black-box function defined over a complex configuration space, each point of which specifies both how features are generated and how predictive models are trained on those features. We propose using state-of-the-art Bayesian optimization algorithms to inform the choice of topological vectorization hyperparameters while simultaneously choosing learning model parameters. We demonstrate the need for and effectiveness of this pipeline using two difficult biological learning problems, and illustrate the nontrivial interactions between topological feature generation and learning model hyperparameters.
  22. Extremal Event Graphs: A (Stable) Tool for Analyzing Noisy Time Series Data (2022)

    Robin Belton, Bree Cummins, Brittany Terese Fasy, Tomáš Gedeon
    Abstract Local maxima and minima, or extremal events, in experimental time series can be used as a coarse summary to characterize data. However, the discrete sampling in recording experimental measurements suggests uncertainty on the true timing of extrema during the experiment. This in turn gives uncertainty in the timing order of extrema within the time series. Motivated by applications in genomic time series and biological network analysis, we construct a weighted directed acyclic graph (DAG) called an extremal event DAG using techniques from persistent homology that is robust to measurement noise. Furthermore, we define a distance between extremal event DAGs based on the edit distance between strings. We prove several properties including local stability for the extremal event DAG distance with respect to pairwise \$L_\\infty\\$ distances between functions in the time series data. Lastly, we provide algorithms, publicly free software, and implementations on extremal event DAG construction and comparison.
  23. Reviews: Topological Distances and Losses for Brain Networks (2021)

    Moo K. Chung, Alexander Smith, Gary Shiu
    Abstract Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological differences in brain networks. Further, Euclidean distances are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to use distances and loss functions that recognize topology of data. In this review paper, we survey various topological distance and loss functions from topological data analysis (TDA) and persistent homology that can be used in brain network analysis more effectively. Although there are many recent brain imaging studies that are based on TDA methods, possibly due to the lack of method awareness, TDA has not taken as the mainstream tool in brain imaging field yet. The main purpose of this paper is provide the relevant technical survey of these powerful tools that are immediately applicable to brain network data.
  24. TDAExplore: Quantitative Analysis of Fluorescence Microscopy Images Through Topology-Based Machine Learning (2021)

    Parker Edwards, Kristen Skruber, Nikola Milićević, James B. Heidings, Tracy-Ann Read, Peter Bubenik, Eric A. Vitriol
    Abstract Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20–30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.
  25. TDA-Net: Fusion of Persistent Homology and Deep Learning Features for COVID-19 Detection From Chest X-Ray Images (2021)

    Mustafa Hajij, Ghada Zamzmi, Fawwaz Batayneh
    Abstract Topological Data Analysis (TDA) has emerged recently as a robust tool to extract and compare the structure of datasets. TDA identifies features in data (e.g., connected components and holes) and assigns a quantitative measure to these features. Several studies reported that topological features extracted by TDA tools provide unique information about the data, discover new insights, and determine which feature is more related to the outcome. On the other hand, the overwhelming success of deep neural networks in learning patterns and relationships has been proven on various data applications including images. To capture the characteristics of both worlds, we propose TDA-Net, a novel ensemble network that fuses topological and deep features for the purpose of enhancing model generalizability and accuracy. We apply the proposed TDA-Net to a critical application, which is the automated detection of COVID-19 from CXR images. Experimental results showed that the proposed network achieved excellent performance and suggested the applicability of our method in practice.
  26. A Topological Data Analysis Based Classification Method for Multiple Measurements (2019)

    Henri Riihimäki, Wojciech Chachólski, Jakob Theorell, Jan Hillert, Ryan Ramanujam
    Abstract \textlessh3\textgreaterAbstract\textless/h3\textgreater \textlessh3\textgreaterBackground\textless/h3\textgreater \textlessp\textgreaterMachine learning models for repeated measurements are limited. Using topological data analysis (TDA), we present a classifier for repeated measurements which samples from the data space and builds a network graph based on the data topology. When applying this to two case studies, accuracy exceeds alternative models with additional benefits such as reporting data subsets with high purity along with feature values.\textless/p\textgreater\textlessh3\textgreaterResults\textless/h3\textgreater \textlessp\textgreaterFor 300 examples of 3 tree species, the accuracy reached 80% after 30 datapoints, which was improved to 90% after increased sampling to 400 datapoints. Using data from 100 examples of each of 6 point processes, the classifier achieved 96.8% accuracy. In both datasets, the TDA classifier outperformed an alternative model.\textless/p\textgreater\textlessh3\textgreaterConclusions\textless/h3\textgreater \textlessp\textgreaterThis algorithm and software can be beneficial for repeated measurement data common in biological sciences, as both an accurate classifier and a feature selection tool.\textless/p\textgreater
  27. Delineation of a Conserved Arrestin-Biased Signaling Repertoire in Vivo (2015)

    Stuart Maudsley, Bronwen Martin, Diane Gesty-Palmer, Huey Cheung, Calvin Johnson, Shamit Patel, Kevin G. Becker, William H. Wood, Yongqing Zhang, Elin Lehrmann, Louis M. Luttrell
    Abstract Biased G protein–coupled receptor agonists engender a restricted repertoire of downstream events from their cognate receptors, permitting them to produce mixed agonist-antagonist effects in vivo. While this opens the possibility of novel therapeutics, it complicates rational drug design, since the in vivo response to a biased agonist cannot be reliably predicted from its in cellula efficacy. We have employed novel informatic approaches to characterize the in vivo transcriptomic signature of the arrestin pathway-selective parathyroid hormone analog [d-Trp12, Tyr34]bovine PTH(7-34) in six different murine tissues after chronic drug exposure. We find that [d-Trp12, Tyr34]bovine PTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated across tissues than that of the pluripotent agonist, human PTH(1-34). This arrestin-focused network is closely associated with transcriptional control of cell growth and development. Our demonstration of a conserved arrestin-dependent transcriptomic signature suggests a framework within which the in vivo outcomes of arrestin-biased signaling may be generalized.
  28. Coexistence Holes Characterize the Assembly and Disassembly of Multispecies Systems (2021)

    Marco Tulio Angulo, Aaron Kelley, Luis Montejano, Chuliang Song, Serguei Saavedra
    Abstract A central goal of ecological research has been to understand the limits on the maximum number of species that can coexist under given constraints. However, we know little about the assembly and disassembly processes under which a community can reach such a maximum number, or whether this number is in fact attainable in practice. This limitation is partly due to the challenge of performing experimental work and partly due to the lack of a formalism under which one can systematically study such processes. Here, we introduce a formalism based on algebraic topology and homology theory to study the space of species coexistence formed by a given pool of species. We show that this space is characterized by ubiquitous discontinuities that we call coexistence holes (that is, empty spaces surrounded by filled space). Using theoretical and experimental systems, we provide direct evidence showing that these coexistence holes do not occur arbitrarily—their diversity is constrained by the internal structure of species interactions and their frequency can be explained by the external factors acting on these systems. Our work suggests that the assembly and disassembly of ecological systems is a discontinuous process that tends to obey regularities.
  29. Topological Early Warning Signals: Quantifying Varying Routes to Extinction in a Spatially Distributed Population Model (2022)

    Laura S. Storch, Sarah L. Day
    Abstract Understanding and predicting critical transitions in spatially explicit ecological systems is particularly challenging due to their complex spatial and temporal dynamics and high dimensionality. Here, we explore changes in population distribution patterns during a critical transition (an extinction event) using computational topology. Computational topology allows us to quantify certain features of a population distribution pattern, such as the level of fragmentation. We create population distribution patterns via a simple coupled patch model with Ricker map growth and nearest neighbors dispersal on a two dimensional lattice. We observe two dominant paths to extinction within the explored parameter space that depend critically on the dispersal rate d and the rate of parameter drift, Δϵ. These paths to extinction are easily topologically distinguishable, so categorization can be automated. We use this population model as a theoretical proof-of-concept for the methodology, and argue that computational topology is a powerful tool for analyzing dynamical changes in systems with noisy data that are coarsely resolved in space and/or time. In addition, computational topology can provide early warning signals for chaotic dynamical systems where traditional statistical early warning signals would fail. For these reasons, we envision this work as a helpful addition to the critical transitions prediction toolbox.
  30. Topological Data Analysis of Spatial Patterning in Heterogeneous Cell Populations: Clustering and Sorting With Varying Cell-Cell Adhesion (2023)

    Dhananjay Bhaskar, William Y. Zhang, Alexandria Volkening, Björn Sandstede, Ian Y. Wong
    Abstract Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains challenging, particularly given their structural diversity and biological variability. Recent developments based on topological data analysis are intriguing to reveal similarities in tissue architecture, but these methods remain computationally expensive. In this article, we show that multicellular patterns organized from two interacting cell types can be efficiently represented through persistence images. Our optimized combination of dimensionality reduction via autoencoders, combined with hierarchical clustering, achieved high classification accuracy for simulations with constant cell numbers. We further demonstrate that persistence images can be normalized to improve classification for simulations with varying cell numbers due to proliferation. Finally, we systematically consider the importance of incorporating different topological features as well as information about each cell type to improve classification accuracy. We envision that topological machine learning based on persistence images will enable versatile and robust classification of complex tissue architectures that occur in development and disease.
  31. Stable Topological Summaries for Analyzing the Organization of Cells in a Packed Tissue (2021)

    Nieves Atienza, Maria-Jose Jimenez, Manuel Soriano-Trigueros
    Abstract We use topological data analysis tools for studying the inner organization of cells in segmented images of epithelial tissues. More specifically, for each segmented image, we compute different persistence barcodes, which codify the lifetime of homology classes (persistent homology) along different filtrations (increasing nested sequences of simplicial complexes) that are built from the regions representing the cells in the tissue. We use a complete and well-grounded set of numerical variables over those persistence barcodes, also known as topological summaries. A novel combination of normalization methods for both the set of input segmented images and the produced barcodes allows for the proven stability results for those variables with respect to small changes in the input, as well as invariance to image scale. Our study provides new insights to this problem, such as a possible novel indicator for the development of the drosophila wing disc tissue or the importance of centroids’ distribution to differentiate some tissues from their CVT-path counterpart (a mathematical model of epithelia based on Voronoi diagrams). We also show how the use of topological summaries may improve the classification accuracy of epithelial images using a Random Forest algorithm.
  32. Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)

    Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. Yoon
    Abstract Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable.
  33. Weighted-Persistent-Homology-Based Machine Learning for RNA Flexibility Analysis (2020)

    Chi Seng Pun, Brandon Yung Sin Yong, Kelin Xia
    Abstract With the great significance of biomolecular flexibility in biomolecular dynamics and functional analysis, various experimental and theoretical models are developed. Experimentally, Debye-Waller factor, also known as B-factor, measures atomic mean-square displacement and is usually considered as an important measurement for flexibility. Theoretically, elastic network models, Gaussian network model, flexibility-rigidity model, and other computational models have been proposed for flexibility analysis by shedding light on the biomolecular inner topological structures. Recently, a topology-based machine learning model has been proposed. By using the features from persistent homology, this model achieves a remarkable high Pearson correlation coefficient (PCC) in protein B-factor prediction. Motivated by its success, we propose weighted-persistent-homology (WPH)-based machine learning (WPHML) models for RNA flexibility analysis. Our WPH is a newly-proposed model, which incorporate physical, chemical and biological information into topological measurements using a weight function. In particular, we use local persistent homology (LPH) to focus on the topological information of local regions. Our WPHML model is validated on a well-established RNA dataset, and numerical experiments show that our model can achieve a PCC of up to 0.5822. The comparison with the previous sequence-information-based learning models shows that a consistent improvement in performance by at least 10% is achieved in our current model.
  34. The Persistent Homology Mathematical Framework Provides Enhanced Genotype-to-Phenotype Associations for Plant Morphology (2018)

    Mao Li, Margaret H. Frank, Viktoriya Coneva, Washington Mio, Daniel H. Chitwood, Christopher N. Topp
    Abstract Efforts to understand the genetic and environmental conditioning of plant morphology are hindered by the lack of flexible and effective tools for quantifying morphology. Here, we demonstrate that persistent-homology-based topological methods can improve measurement of variation in leaf shape, serrations, and root architecture. We apply these methods to 2D images of leaves and root systems in field-grown plants of a domesticated introgression line population of tomato (Solanum pennellii). We find that compared with some commonly used conventional traits, (1) persistent-homology-based methods can more comprehensively capture morphological variation; (2) these techniques discriminate between genotypes with a larger normalized effect size and detect a greater number of unique quantitative trait loci (QTLs); (3) multivariate traits, whether statistically derived from univariate or persistent-homology-based traits, improve our ability to understand the genetic basis of phenotype; and (4) persistent-homology-based techniques detect unique QTLs compared to conventional traits or their multivariate derivatives, indicating that previously unmeasured aspects of morphology are now detectable. The QTL results further imply that genetic contributions to morphology can affect both the shoot and root, revealing a pleiotropic basis to natural variation in tomato. Persistent homology is a versatile framework to quantify plant morphology and developmental processes that complements and extends existing methods.
  35. WDR76 Co-Localizes With Heterochromatin Related Proteins and Rapidly Responds to DNA Damage (2016)

    Joshua M. Gilmore, Mihaela E. Sardiu, Brad D. Groppe, Janet L. Thornton, Xingyu Liu, Gerald Dayebgadoh, Charles A. Banks, Brian D. Slaughter, Jay R. Unruh, Jerry L. Workman, Laurence Florens, Michael P. Washburn
    Abstract Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage.
  36. Identification of Relevant Genetic Alterations in Cancer Using Topological Data Analysis (2020)

    Raúl Rabadán, Yamina Mohamedi, Udi Rubin, Tim Chu, Adam N. Alghalith, Oliver Elliott, Luis Arnés, Santiago Cal, Álvaro J. Obaya, Arnold J. Levine, Pablo G. Cámara
    Abstract Large-scale cancer genomic studies enable the systematic identification of mutations that lead to the genesis and progression of tumors, uncovering the underlying molecular mechanisms and potential therapies. While some such mutations are recurrently found in many tumors, many others exist solely within a few samples, precluding detection by conventional recurrence-based statistical approaches. Integrated analysis of somatic mutations and RNA expression data across 12 tumor types reveals that mutations of cancer genes are usually accompanied by substantial changes in expression. We use topological data analysis to leverage this observation and uncover 38 elusive candidate cancer-associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 in lung adenocarcinoma. We show that ADAMTS12−/− mice have a five-fold increase in the susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor suppressor gene. Our results demonstrate that data integration through topological techniques can increase our ability to identify previously unreported cancer-related alterations., Rare cancer mutations are often missed using recurrence-based statistical approaches, but are usually accompanied by changes in expression. Here the authors leverage this information to uncover several elusive candidate cancer-associated genes using topological data analysis.
  37. Evolutionary Homology on Coupled Dynamical Systems With Applications to Protein Flexibility Analysis (2020)

    Zixuan Cang, Elizabeth Munch, Guo-Wei Wei
    Abstract While the spatial topological persistence is naturally constructed from a radius-based filtration, it has hardly been derived from a temporal filtration. Most topological models are designed for the global topology of a given object as a whole. There is no method reported in the literature for the topology of an individual component in an object to the best of our knowledge. For many problems in science and engineering, the topology of an individual component is important for describing its properties. We propose evolutionary homology (EH) constructed via a time evolution-based filtration and topological persistence. Our approach couples a set of dynamical systems or chaotic oscillators by the interactions of a physical system, such as a macromolecule. The interactions are approximated by weighted graph Laplacians. Simplices, simplicial complexes, algebraic groups and topological persistence are defined on the coupled trajectories of the chaotic oscillators. The resulting EH gives rise to time-dependent topological invariants or evolutionary barcodes for an individual component of the physical system, revealing its topology-function relationship. In conjunction with Wasserstein metrics, the proposed EH is applied to protein flexibility analysis, an important problem in computational biophysics. Numerical results for the B-factor prediction of a benchmark set of 364 proteins indicate that the proposed EH outperforms all the other state-of-the-art methods in the field.
  38. Specimen-Based Analysis of Morphology and the Environment in Ecologically Dominant Grasses: The Power of the Herbarium (2019)

    Christine A. McAllister, Michael R. McKain, Mao Li, Bess Bookout, Elizabeth A. Kellogg
    Abstract Herbaria contain a cumulative sample of the world's flora, assembled by thousands of people over centuries. To capitalize on this resource, we conducted a specimen-based analysis of a major clade in the grass tribe Andropogoneae, including the dominant species of the world's grasslands in the genera Andropogon, Schizachyrium, Hyparrhenia and several others. We imaged 186 of the 250 named species of the clade, georeferenced the specimens and extracted climatic variables for each. Using semi- and fully automated image analysis techniques, we extracted spikelet morphological characters and correlated these with environmental variables. We generated chloroplast genome sequences to correct for phylogenetic covariance and here present a new phylogeny for 81 of the species. We confirm and extend earlier studies to show that Andropogon and Schizachyrium are not monophyletic. In addition, we find all morphological and ecological characters are homoplasious but variable among clades. For example, sessile spikelet length is positively correlated with awn length when all accessions are considered, but when separated by clade, the relationship is positive for three sub-clades and negative for three others. Climate variables showed no correlation with morphological variation in the spikelet pair; only very weak effects of temperature and precipitation were detected on macrohair density. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the Anthropocene'.
  39. Representability of Algebraic Topology for Biomolecules in Machine Learning Based Scoring and Virtual Screening (2018)

    Zixuan Cang, Lin Mu, Guo-Wei Wei
    Abstract This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
  40. The Growing Topology of the C. Elegans Connectome (2020)

    Alec Helm, Ann S. Blevins, Danielle S. Bassett
    Abstract Probing the developing neural circuitry in Caenorhabditis elegans has enhanced our understanding of nervous systems. The C. elegans connectome, like those of other species, is characterized by a rich club of densely connected neurons embedded within a small-world architecture. This organization of neuronal connections, captured by quantitative network statistics, provides insight into the system's capacity to perform integrative computations. Yet these network measures are limited in their ability to detect weakly connected motifs, such as topological cavities, that may support the systems capacity to perform segregated computations. We address this limitation by using persistent homology to track the evolution of topological cavities in the growing C. elegans connectome throughout neural development, and assess the degree to which the growing connectomes topology is resistant to biological noise. We show that the developing connectome topology is both relatively robust to changes in neuron birth times and not captured by similar growth models. Additionally, we quantify the consequence of a neurons specific birth time and ask if this metric tracks other biological properties of neurons. Our results suggest that the connectomes growing topology is a robust feature of the developing connectome that is distinct from other network properties, and that the growing topology is particularly sensitive to the exact birth times of a small set of predominantly motor neurons. By utilizing novel measurements that track biological features, we anticipate that our study will be helpful in the construction of more accurate models of neuronal development in C. elegans
  41. Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace (2018)

    Mao Li, Hong An, Ruthie Angelovici, Clement Bagaza, Albert Batushansky, Lynn Clark, Viktoriya Coneva, Michael J. Donoghue, Erika Edwards, Diego Fajardo, Hui Fang, Margaret H. Frank, Timothy Gallaher, Sarah Gebken, Theresa Hill, Shelley Jansky, Baljinder Kaur, Phillip C. Klahs, Laura L. Klein, Vasu Kuraparthy, Jason Londo, Zoë Migicovsky, Allison Miller, Rebekah Mohn, Sean Myles, Wagner C. Otoni, J. C. Pires, Edmond Rieffer, Sam Schmerler, Elizabeth Spriggs, Christopher N. Topp, Allen Van Deynze, Kuang Zhang, Linglong Zhu, Braden M. Zink, Daniel H. Chitwood
    Abstract Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.
  42. Weighted Persistent Homology for Biomolecular Data Analysis (2020)

    Zhenyu Meng, D. Vijay Anand, Yunpeng Lu, Jie Wu, Kelin Xia
    Abstract In this paper, we systematically review weighted persistent homology (WPH) models and their applications in biomolecular data analysis. Essentially, the weight value, which reflects physical, chemical and biological properties, can be assigned to vertices (atom centers), edges (bonds), or higher order simplexes (cluster of atoms), depending on the biomolecular structure, function, and dynamics properties. Further, we propose the first localized weighted persistent homology (LWPH). Inspired by the great success of element specific persistent homology (ESPH), we do not treat biomolecules as an inseparable system like all previous weighted models, instead we decompose them into a series of local domains, which may be overlapped with each other. The general persistent homology or weighted persistent homology analysis is then applied on each of these local domains. In this way, functional properties, that are embedded in local structures, can be revealed. Our model has been applied to systematically study DNA structures. It has been found that our LWPH based features can be used to successfully discriminate the A-, B-, and Z-types of DNA. More importantly, our LWPH based principal component analysis (PCA) model can identify two configurational states of DNA structures in ion liquid environment, which can be revealed only by the complicated helical coordinate system. The great consistence with the helical-coordinate model demonstrates that our model captures local structure variations so well that it is comparable with geometric models. Moreover, geometric measurements are usually defined in local regions. For instance, the helical-coordinate system is limited to one or two basepairs. However, our LWPH can quantitatively characterize structure information in regions or domains with arbitrary sizes and shapes, where traditional geometrical measurements fail.
  43. Quantifying Genetic Innovation: Mathematical Foundations for the Topological Study of Reticulate Evolution (2020)

    Michael Lesnick, Raúl Rabadán, Daniel I. S. Rosenbloom
    Abstract A topological approach to the study of genetic recombination, based on persistent homology, was introduced by Chan, Carlsson, and Rabadán in 2013. This associates a sequence of signatures called barcodes to genomic data sampled from an evolutionary history. In this paper, we develop theoretical foundations for this approach. First, we present a novel formulation of the underlying inference problem. Specifically, we introduce and study the novelty profile, a simple, stable statistic of an evolutionary history which not only counts recombination events but also quantifies how recombination creates genetic diversity. We propose that the (hitherto implicit) goal of the topological approach to recombination is the estimation of novelty profiles. We then study the problem of obtaining a lower bound on the novelty profile using barcodes. We focus on a low-recombination regime, where the evolutionary history can be described by a directed acyclic graph called a galled tree, which differs from a tree only by isolated topological defects. We show that in this regime, under a complete sampling assumption, the \$1\textasciicircum\mathrm\st\\$ barcode yields a lower bound on the novelty profile, and hence on the number of recombination events. For \$i\textgreater1\$, the \$i\textasciicircum\\mathrm\th\\\$ barcode is empty. In addition, we use a stability principle to strengthen these results to ones which hold for any subsample of an arbitrary evolutionary history. To establish these results, we describe the topology of the Vietoris--Rips filtrations arising from evolutionary histories indexed by galled trees. As a step towards a probabilistic theory, we also show that for a random history indexed by a fixed galled tree and satisfying biologically reasonable conditions, the intervals of the \$1\textasciicircum\\mathrm\st\\\$ barcode are independent random variables. Using simulations, we explore the sensitivity of these intervals to recombination.