🍩 Database of Original & Non-Theoretical Uses of Topology

(found 34 matches in 0.054207s)
  1. Statistical Inference for Persistent Homology Applied to Simulated fMRI Time Series Data (2023)

    Hassan Abdallah, Adam Regalski, Mohammad Behzad Kang, Maria Berishaj, Nkechi Nnadi, Asadur Chowdury, Vaibhav A. Diwadkar, Andrew Salch
    Abstract Time-series data are amongst the most widely-used in biomedical sciences, including domains such as functional Magnetic Resonance Imaging (fMRI). Structure within time series data can be captured by the tools of topological data analysis (TDA). Persistent homology is the mostly commonly used data-analytic tool in TDA, and can effectively summarize complex high-dimensional data into an interpretable 2-dimensional representation called a persistence diagram. Existing methods for statistical inference for persistent homology of data depend on an independence assumption being satisfied. While persistent homology can be computed for each time index in a time-series, time-series data often fail to satisfy the independence assumption. This paper develops a statistical test that obviates the independence assumption by implementing a multi-level block sampled Monte Carlo test with sets of persistence diagrams. Its efficacy for detecting task-dependent topological organization is then demonstrated on simulated fMRI data. This new statistical test is therefore suitable for analyzing persistent homology of fMRI data, and of non-independent data in general.
  2. A Simplified Algorithm for Identifying Abnormal Changes in Dynamic Networks (2022)

    Bouchaib Azamir, Driss Bennis, Bertrand Michel
    Abstract Topological data analysis has recently been applied to the study of dynamic networks. In this context, an algorithm was introduced and helps, among other things, to detect early warning signals of abnormal changes in the dynamic network under study. However, the complexity of this algorithm increases significantly once the database studied grows. In this paper, we propose a simplification of the algorithm without affecting its performance. We give various applications and simulations of the new algorithm on some weighted networks. The obtained results show clearly the efficiency of the introduced approach. Moreover, in some cases, the proposed algorithm makes it possible to highlight local information and sometimes early warning signals of local abnormal changes.
  3. Extremal Event Graphs: A (Stable) Tool for Analyzing Noisy Time Series Data (2022)

    Robin Belton, Bree Cummins, Brittany Terese Fasy, Tomáš Gedeon
    Abstract Local maxima and minima, or extremal events, in experimental time series can be used as a coarse summary to characterize data. However, the discrete sampling in recording experimental measurements suggests uncertainty on the true timing of extrema during the experiment. This in turn gives uncertainty in the timing order of extrema within the time series. Motivated by applications in genomic time series and biological network analysis, we construct a weighted directed acyclic graph (DAG) called an extremal event DAG using techniques from persistent homology that is robust to measurement noise. Furthermore, we define a distance between extremal event DAGs based on the edit distance between strings. We prove several properties including local stability for the extremal event DAG distance with respect to pairwise \$L_\\infty\\$ distances between functions in the time series data. Lastly, we provide algorithms, publicly free software, and implementations on extremal event DAG construction and comparison.
  4. Topological Data Analysis for Electric Motor Eccentricity Fault Detection (2022)

    Bingnan Wang, Chungwei Lin, Hiroshi Inoue, Makoto Kanemaru
    Abstract In this paper, we develop topological data analysis (TDA) method for motor current signature analysis (MCSA), and apply it to induction motor eccentricity fault detection. We introduce TDA and present the procedure of extracting topological features from time-domain data that will be represented using persistence diagrams and vectorized Betti sequences. The procedure is applied to induction machine phase current signal analysis, and shown to be highly effective in differentiating signals from different eccentricity levels. With TDA, we are able to use a simple regression model that can predict the fault levels with reasonable accuracy, even for the data of eccentricity levels that are not seen in the training data. The proposed method is model-free, and only requires a small segment of time-domain data to make prediction. These advantages make it attractive for a wide range of fault detection applications.
  5. Severe Slugging Flow Identification From Topological Indicators (2022)

    Simone Casolo
    Abstract In this work, topological data analysis is used to identify the onset of severe slug flow in offshore petroleum production systems. Severe slugging is a multiphase flow regime known to be very inefficient and potentially harmful to process equipment and it is characterized by large oscillations in the production fluid pressure. Time series from pressure sensors in subsea oil wells are processed by means of Takens embedding to produce point clouds of data. Embedded sensor data is then analyzed using persistent homology to obtain topological indicators capable of revealing the occurrence of severe slugging in a condition-based monitoring approach. A large dataset of well events consisting of both real and simulated data is used to demonstrate the possibilty of authomatizing severe slugging detection from live data via topological data analysis. Methods based on persistence diagrams are shown to accurately identify severe slugging and to classify different flow regimes from pressure signals of producing wells with supervised machine learning.
  6. Topological Early Warning Signals: Quantifying Varying Routes to Extinction in a Spatially Distributed Population Model (2022)

    Laura S. Storch, Sarah L. Day
    Abstract Understanding and predicting critical transitions in spatially explicit ecological systems is particularly challenging due to their complex spatial and temporal dynamics and high dimensionality. Here, we explore changes in population distribution patterns during a critical transition (an extinction event) using computational topology. Computational topology allows us to quantify certain features of a population distribution pattern, such as the level of fragmentation. We create population distribution patterns via a simple coupled patch model with Ricker map growth and nearest neighbors dispersal on a two dimensional lattice. We observe two dominant paths to extinction within the explored parameter space that depend critically on the dispersal rate d and the rate of parameter drift, Δϵ. These paths to extinction are easily topologically distinguishable, so categorization can be automated. We use this population model as a theoretical proof-of-concept for the methodology, and argue that computational topology is a powerful tool for analyzing dynamical changes in systems with noisy data that are coarsely resolved in space and/or time. In addition, computational topology can provide early warning signals for chaotic dynamical systems where traditional statistical early warning signals would fail. For these reasons, we envision this work as a helpful addition to the critical transitions prediction toolbox.
  7. Topological Attention for Time Series Forecasting (2021)

    Sebastian Zeng, Florian Graf, Christoph Hofer, Roland Kwitt
    Abstract The problem of (point) forecasting univariate time series is considered. Most approaches, ranging from traditional statistical methods to recent learning-based techniques with neural networks, directly operate on raw time series observations. As an extension, we study whether local topological properties, as captured via persistent homology, can serve as a reliable signal that provides complementary information for learning to forecast. To this end, we propose topological attention, which allows attending to local topological features within a time horizon of historical data. Our approach easily integrates into existing end-to-end trainable forecasting models, such as N-BEATS, and, in combination with the latter exhibits state-of-the-art performance on the large-scale M4 benchmark dataset of 100,000 diverse time series from different domains. Ablation experiments, as well as a comparison to recent techniques in a setting where only a single time series is available for training, corroborate the beneficial nature of including local topological information through an attention mechanism.
  8. Geometric Feature Performance Under Downsampling for EEG Classification Tasks (2021)

    Bryan Bischof, Eric Bunch
    Abstract We experimentally investigate a collection of feature engineering pipelines for use with a CNN for classifying eyes-open or eyes-closed from electroencephalogram (EEG) time-series from the Bonn dataset. Using the Takens' embedding--a geometric representation of time-series--we construct simplicial complexes from EEG data. We then compare \$\epsilon\$-series of Betti-numbers and \$\epsilon\$-series of graph spectra (a novel construction)--two topological invariants of the latent geometry from these complexes--to raw time series of the EEG to fill in a gap in the literature for benchmarking. These methods, inspired by Topological Data Analysis, are used for feature engineering to capture local geometry of the time-series. Additionally, we test these feature pipelines' robustness to downsampling and data reduction. This paper seeks to establish clearer expectations for both time-series classification via geometric features, and how CNNs for time-series respond to data of degraded resolution.
  9. Topological Data Analysis of C. Elegans Locomotion and Behavior (2021)

    Ashleigh Thomas, Kathleen Bates, Alex Elchesen, Iryna Hartsock, Hang Lu, Peter Bubenik
    Abstract Video of nematodes/roundworms was analyzed using persistent homology to study locomotion and behavior. In each frame, an organism's body posture was represented by a high-dimensional vector. By concatenating points in fixed-duration segments of this time series, we created a sliding window embedding (sometimes called a time delay embedding) where each point corresponds to a sequence of postures of an organism. Persistent homology on the points in this time series detected behaviors and comparisons of these persistent homology computations detected variation in their corresponding behaviors. We used average persistence landscapes and machine learning techniques to study changes in locomotion and behavior in varying environments.
  10. Topological Data Analysis: Concepts, Computation, and Applications in Chemical Engineering (2021)

    Alexander D. Smith, Paweł Dłotko, Victor M. Zavala
    Abstract A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysis (TDA) is a field of mathematics that analyzes data from a fundamentally different perspective. TDA represents datasets as geometric objects and provides dimensionality reduction techniques that project such objects onto low-dimensional descriptors. The key properties of these descriptors (also known as topological features) are that they provide multiscale information and that they are stable under perturbations (e.g., noise, translation, and rotation). In this work, we review the key mathematical concepts and methods of TDA and present different applications in chemical engineering.
  11. Investigation of Flash Crash via Topological Data Analysis (2020)

    Wonse Kim, Younng-Jin Kim, Gihyun Lee, Woong Kook
    Abstract Topological data analysis has been acknowledged as one of the most successful mathematical data analytic methodologies in various fields including medicine, genetics, and image analysis. In this paper, we explore the potential of this methodology in finance by applying persistence landscape and dynamic time series analysis to analyze an extreme event in the stock market, known as Flash Crash. We will provide results of our empirical investigation to confirm the effectiveness of our new method not only for the characterization of this extreme event but also for its prediction purposes.
  12. A Novel Method of Extracting Topological Features From Word Embeddings (2020)

    Shafie Gholizadeh, Armin Seyeditabari, Wlodek Zadrozny
    Abstract In recent years, topological data analysis has been utilized for a wide range of problems to deal with high dimensional noisy data. While text representations are often high dimensional and noisy, there are only a few work on the application of topological data analysis in natural language processing. In this paper, we introduce a novel algorithm to extract topological features from word embedding representation of text that can be used for text classification. Working on word embeddings, topological data analysis can interpret the embedding high-dimensional space and discover the relations among different embedding dimensions. We will use persistent homology, the most commonly tool from topological data analysis, for our experiment. Examining our topological algorithm on long textual documents, we will show our defined topological features may outperform conventional text mining features.
  13. Topological Analysis Reveals State Transitions in Human Gut and Marine Bacterial Communities (2020)

    William K. Chang, David VanInsberghe, Libusha Kelly
    Abstract Microbiome dynamics influence the health and functioning of human physiology and the environment and are driven in part by interactions between large numbers of microbial taxa, making large-scale prediction and modeling a challenge. Here, using topological data analysis, we identify states and dynamical features relevant to macroscopic processes. We show that gut disease processes and marine geochemical events are associated with transitions between community states, defined as topological features of the data density. We find a reproducible two-state succession during recovery from cholera in the gut microbiomes of multiple patients, evidence of dynamic stability in the gut microbiome of a healthy human after experiencing diarrhea during travel, and periodic state transitions in a marine Prochlorococcus community driven by water column cycling. Our approach bridges small-scale fluctuations in microbiome composition and large-scale changes in phenotype without details of underlying mechanisms, and provides an assessment of microbiome stability and its relation to human and environmental health.
  14. Dynamic State Analysis of a Driven Magnetic Pendulum Using Ordinal Partition Networks and Topological Data Analysis (2020)

    Audun Myers, Firas A. Khasawneh
    Abstract Abstract. The use of complex networks for time series analysis has recently shown to be useful as a tool for detecting dynamic state changes for a wide variety of applications. In this work, we implement the commonly used ordinal partition network to transform a time series into a network for detecting these state changes for the simple magnetic pendulum. The time series that we used are obtained experimentally from a base-excited magnetic pendulum apparatus, and numerically from the corresponding governing equations. The magnetic pendulum provides a relatively simple, non-linear example demonstrating transitions from periodic to chaotic motion with the variation of system parameters. For our method, we implement persistent homology, a shape measuring tool from Topological Data Analysis (TDA), to summarize the shape of the resulting ordinal partition networks as a tool for detecting state changes. We show that this network analysis tool provides a clear distinction between periodic and chaotic time series. Another contribution of this work is the successful application of the networks-TDA pipeline, for the first time, to signals from non-autonomous nonlinear systems. This opens the door for our approach to be used as an automatic design tool for studying the effect of design parameters on the resulting system response. Other uses of this approach include fault detection from sensor signals in a wide variety of engineering operations.
  15. Topological Data Analysis in Text Classification: Extracting Features With Additive Information (2020)

    Shafie Gholizadeh, Ketki Savle, Armin Seyeditabari, Wlodek Zadrozny
    Abstract While the strength of Topological Data Analysis has been explored in many studies on high dimensional numeric data, it is still a challenging task to apply it to text. As the primary goal in topological data analysis is to define and quantify the shapes in numeric data, defining shapes in the text is much more challenging, even though the geometries of vector spaces and conceptual spaces are clearly relevant for information retrieval and semantics. In this paper, we examine two different methods of extraction of topological features from text, using as the underlying representations of words the two most popular methods, namely word embeddings and TF-IDF vectors. To extract topological features from the word embedding space, we interpret the embedding of a text document as high dimensional time series, and we analyze the topology of the underlying graph where the vertices correspond to different embedding dimensions. For topological data analysis with the TF-IDF representations, we analyze the topology of the graph whose vertices come from the TF-IDF vectors of different blocks in the textual document. In both cases, we apply homological persistence to reveal the geometric structures under different distance resolutions. Our results show that these topological features carry some exclusive information that is not captured by conventional text mining methods. In our experiments we observe adding topological features to the conventional features in ensemble models improves the classification results (up to 5\%). On the other hand, as expected, topological features by themselves may be not sufficient for effective classification. It is an open problem to see whether TDA features from word embeddings might be sufficient, as they seem to perform within a range of few points from top results obtained with a linear support vector classifier.
  16. Analyzing Collective Motion With Machine Learning and Topology (2019)

    Dhananjay Bhaskar, Angelika Manhart, Jesse Milzman, John T. Nardini, Kathleen M. Storey, Chad M. Topaz, Lori Ziegelmeier
    Abstract We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters.
  17. Nonlinear Dynamic Approaches to Identify Atrial Fibrillation Progression Based on Topological Methods (2019)

    Bahareh Safarbali, Seyed Mohammad Reza Hashemi Golpayegani
    Abstract In recent years, atrial fibrillation (AF) development from paroxysmal to persistent or permanent forms has become an important issue in cardiovascular disorders. Information about AF pattern of presentation (paroxysmal, persistent, or permanent) was useful in the management of algorithms in each category. This management is aimed at reducing symptoms and stopping severe problems associated with AF. AF classification has been based on time duration and episodes until now. In particular, complexity changes in Heart Rate Variation (HRV) may contain clinically relevant signals of imminent systemic dysregulation. A number of nonlinear methods based on phase space and topological properties can give more insight into HRV abnormalities such as fibrillation. Aiming to provide a nonlinear tool to qualitatively classify AF stages, we proposed two geometrical indices (fractal dimension and persistent homology) based on HRV phase space, which can successfully replicate the changes in AF progression. The study population includes 38 lone AF patients and 20 normal subjects, which are collected from the Physio-Bank database. “Time of Life (TOL)” is proposed as a new feature based on the initial and final Čech radius in the persistent homology diagram. A neural network was implemented to prove the effectiveness of both TOL and fractal dimension as classification features. The accuracy of classification performance was 93%. The proposed indices provide a signal representation framework useful to understand the dynamic changes in AF cardiac patterns and to classify normal and pathological rhythms.
  18. A Topological Approach to Selecting Models of Biological Experiments (2019)

    M. Ulmer, Lori Ziegelmeier, Chad M. Topaz
    Abstract We use topological data analysis as a tool to analyze the fit of mathematical models to experimental data. This study is built on data obtained from motion tracking groups of aphids in [Nilsen et al., PLOS One, 2013] and two random walk models that were proposed to describe the data. One model incorporates social interactions between the insects via a functional dependence on an aphid’s distance to its nearest neighbor. The second model is a control model that ignores this dependence. We compare data from each model to data from experiment by performing statistical tests based on three different sets of measures. First, we use time series of order parameters commonly used in collective motion studies. These order parameters measure the overall polarization and angular momentum of the group, and do not rely on a priori knowledge of the models that produced the data. Second, we use order parameter time series that do rely on a priori knowledge, namely average distance to nearest neighbor and percentage of aphids moving. Third, we use computational persistent homology to calculate topological signatures of the data. Analysis of the a priori order parameters indicates that the interactive model better describes the experimental data than the control model does. The topological approach performs as well as these a priori order parameters and better than the other order parameters, suggesting the utility of the topological approach in the absence of specific knowledge of mechanisms underlying the data.
  19. Improving Health Care Management Through Persistent Homology of Time-Varying Variability of Emergency Department Patient Flow (2018)

    Mael Dugast, Guillaume Bouleux, Olivier Mory, Eric Marcon
    Abstract Excessive admissions at the Emergency Department (ED) is a phenomenon very closely linked to the propagation of viruses. It is a cause of overcrowding for EDs and a public health problem. The aim of this work is to give EDs’ leaders more time for decision making during this period. Based on the admissions time series associated with specific clinical diagnoses, we will first perform a Detrended Fluctuation Analysis (DFA) to obtain the corresponding variability time series. Next, we will embed this time series on a manifold to obtain a point cloud representation and use Topological Data Analysis (TDA) through persistent homology technic to propose two early realtime indicators. One is the early indicator of abnormal arrivals at the ED whereas the second gives the information on the time index of the maximum number of arrivals. The performance of the detectors is parameter dependent and it can evolve each year. That is why we also propose to solve a bi-objective optimization problem to track the variations of this parameter.
  20. Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology (2018)

    Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul Rosen
    Abstract Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.
  21. A Probabilistic Topological Approach to Feature Identification Using a Stochastic Robotic Swarm (2018)

    Ragesh K. Ramachandran, Sean Wilson, Spring Berman
    Abstract This paper presents a novel automated approach to quantifying the topological features of an unknown environment using a swarm of robots with local sensing and limited or no access to global position information. The robots randomly explore the environment and record a time series of their estimated position and the covariance matrix associated with this estimate. After the robots’ deployment, a point cloud indicating the free space of the environment is extracted from their aggregated data. Tools from topological data analysis, in particular the concept of persistent homology, are applied to a subset of the point cloud to construct barcode diagrams, which are used to determine the numbers of different types of features in the domain. We demonstrate that our approach can correctly identify the number of topological features in simulations with zero to four features and in multi-robot experiments with one to three features.
  22. (Quasi)Periodicity Quantification in Video Data, Using Topology (2018)

    Christopher J. Tralie, Jose A. Perea
    Abstract This work introduces a novel framework for quantifying the presence and strength of recurrent dynamics in video data. Specifically, we provide continuous measures of periodicity (perfect repetition) and quasiperiodicity (superposition of periodic modes with noncommensurate periods), in a way which does not require segmentation, training, object tracking, or 1-dimensional surrogate signals. Our methodology operates directly on video data. The approach combines ideas from nonlinear time series analysis (delay embeddings) and computational topology (persistent homology) by translating the problem of finding recurrent dynamics in video data into the problem of determining the circularity or toroidality of an associated geometric space. Through extensive testing, we show the robustness of our scores with respect to several noise models/levels; we show that our periodicity score is superior to other methods when compared to human-generated periodicity rankings; and furthermore, we show that our quasiperiodicity score clearly indicates the presence of biphonation in videos of vibrating vocal folds, which has never before been accomplished quantitatively end to end.
  23. Topological Data Analysis for True Step Detection in Periodic Piecewise Constant Signals (2018)

    Firas A. Khasawneh, Elizabeth Munch
    Abstract This paper introduces a simple yet powerful approach based on topological data analysis for detecting true steps in a periodic, piecewise constant (PWC) signal. The signal is a two-state square wave with randomly varying in-between-pulse spacing, subject to spurious steps at the rising or falling edges which we call digital ringing. We use persistent homology to derive mathematical guarantees for the resulting change detection which enables accurate identification and counting of the true pulses. The approach is tested using both synthetic and experimental data obtained using an engine lathe instrumented with a laser tachometer. The described algorithm enables accurate and automatic calculations of the spindle speed without any choice of parameters. The results are compared with the frequency and sequency methods of the Fourier and Walsh–Hadamard transforms, respectively. Both our approach and the Fourier analysis yield comparable results for pulses with regular spacing and digital ringing while the latter causes large errors using the Walsh–Hadamard method. Further, the described approach significantly outperforms the frequency/sequency analyses when the spacing between the peaks is varied. We discuss generalizing the approach to higher dimensional PWC signals, although using this extension remains an interesting question for future research.
  24. Chatter Classification in Turning Using Machine Learning and Topological Data Analysis (2018)

    Firas A. Khasawneh, Elizabeth Munch, Jose A. Perea
    Abstract Chatter identification and detection in machining processes has been an active area of research in the past two decades. Part of the challenge in studying chatter is that machining equations that describe its occurrence are often nonlinear delay differential equations. The majority of the available tools for chatter identification rely on defining a metric that captures the characteristics of chatter, and a threshold that signals its occurrence. The difficulty in choosing these parameters can be somewhat alleviated by utilizing machine learning techniques. However, even with a successful classification algorithm, the transferability of typical machine learning methods from one data set to another remains very limited. In this paper we combine supervised machine learning with Topological Data Analysis (TDA) to obtain a descriptor of the process which can detect chatter. The features we use are derived from the persistence diagram of an attractor reconstructed from the time series via Takens embedding. We test the approach using deterministic and stochastic turning models, where the stochasticity is introduced via the cutting coefficient term. Our results show a 97% successful classification rate on the deterministic model labeled by the stability diagram obtained using the spectral element method. The features gleaned from the deterministic model are then utilized for characterization of chatter in a stochastic turning model where there are very limited analysis methods.
  25. Identification of Key Features Using Topological Data Analysis for Accurate Prediction of Manufacturing System Outputs (2017)

    Wei Guo, Ashis G. Banerjee
    Abstract Topological data analysis (TDA) has emerged as one of the most promising approaches to extract insights from high-dimensional data of varying types such as images, point clouds, and meshes, in an unsupervised manner. To the best of our knowledge, here, we provide the first successful application of TDA in the manufacturing systems domain. We apply a widely used TDA method, known as the Mapper algorithm, on two benchmark data sets for chemical process yield prediction and semiconductor wafer fault detection, respectively. The algorithm yields topological networks that capture the intrinsic clusters and connections among the clusters present in the data sets, which are difficult to detect using traditional methods. We select key process variables or features that impact the system outcomes by analyzing the network shapes. We then use predictive models to evaluate the impact of the selected features. Results show that the models achieve at least the same level of high prediction accuracy as with all the process variables, thereby, providing a way to carry out process monitoring and control in a more cost-effective manner.
  26. Persistent Homology of Time-Dependent Functional Networks Constructed From Coupled Time Series (2017)

    Bernadette J. Stolz, Heather A. Harrington, Mason A. Porter
    Abstract We use topological data analysis to study “functional networks” that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging data that were acquired from human subjects during a simple motor-learning task in which subjects were monitored for three days during a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process.
  27. Topological Data Analysis of Financial Time Series: Landscapes of Crashes (2017)

    Marian Gidea, Yuri Katz
    Abstract We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their \$L\textasciicircump\$-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the \$L\textasciicircump\$-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of \$L\textasciicircump\$-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which goes beyond the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
  28. Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies (2016)

    Sofya Chepushtanova, Michael Kirby, Chris Peterson, Lori Ziegelmeier
    Abstract The existence of characteristic structure, or shape, in complex data sets has been recognized as increasingly important for mathematical data analysis. This realization has motivated the development of new tools such as persistent homology for exploring topological invariants, or features, in large data sets. In this paper, we apply persistent homology to the characterization of gas plumes in time dependent sequences of hyperspectral cubes, i.e. the analysis of 4-way arrays. We investigate hyperspectral movies of Long-Wavelength Infrared data monitoring an experimental release of chemical simulant into the air. Our approach models regions of interest within the hyperspectral data cubes as points on the real Grassmann manifold Gk,ï źn whose points parameterize the k-dimensional subspaces of \$\$\mathbb \R\\textasciicircumn\$\$Rn, contrasting our approach with the more standard framework in Euclidean space. An advantage of this approach is that it allows a sequence of time slices in a hyperspectral movie to be collapsed to a sequence of points in such a way that some of the key structure within and between the slices is encoded by the points on the Grassmann manifold. This motivates the search for topological features, associated with the evolution of the frames of a hyperspectral movie, within the corresponding points on the Grassmann manifold. The proposed mathematical model affords the processing of large data sets while retaining valuable discriminatory information. In this paper, we discuss how embedding our data in the Grassmann manifold, together with topological data analysis, captures dynamical events that occur as the chemical plume is released and evolves.
  29. Evasion Paths in Mobile Sensor Networks (2015)

    Henry Adams, Gunnar Carlsson
    Abstract Suppose that ball-shaped sensors wander in a bounded domain. A sensor does not know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In ‘Coordinate-free coverage in sensor networks with controlled boundaries via homology', Vin de Silva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path.
  30. Topological Data Analysis of Biological Aggregation Models (2015)

    Chad M. Topaz, Lori Ziegelmeier, Tom Halverson
    Abstract We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.
  31. Homological Scaffolds of Brain Functional Networks (2014)

    G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, F. Vaccarino
    Abstract Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci.10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.
  32. Topological Analysis of Population Activity in Visual Cortex (2008)

    Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov, Guillermo Sapiro, Gunnar Carlsson, Dario L. Ringach
    Abstract Information in the cortex is thought to be represented by the joint activity of neurons. Here we describe how fundamental questions about neural representation can be cast in terms of the topological structure of population activity. A new method, based on the concept of persistent homology, is introduced and applied to the study of population activity in primary visual cortex (V1). We found that the topological structure of activity patterns when the cortex is spontaneously active is similar to those evoked by natural image stimulation and consistent with the topology of a two sphere. We discuss how this structure could emerge from the functional organization of orientation and spatial frequency maps and their mutual relationship. Our findings extend prior results on the relationship between spontaneous and evoked activity in V1 and illustrates how computational topology can help tackle elementary questions about the representation of information in the nervous system.