🍩 Database of Original & Non-Theoretical Uses of Topology

(found 13 matches in 0.003709s)
  1. Persistent Homology for Breast Tumor Classification Using Mammogram Scans (2022)

    Aras Asaad, Dashti Ali, Taban Majeed, Rasber Rashid
    Abstract An Important tool in the field topological data analysis is known as persistent Homology (PH) which is used to encode abstract representation of the homology of data at different resolutions in the form of persistence diagram (PD). In this work we build more than one PD representation of a single image based on a landmark selection method, known as local binary patterns, that encode different types of local textures from images. We employed different PD vectorizations using persistence landscapes, persistence images, persistence binning (Betti Curve) and statistics. We tested the effectiveness of proposed landmark based PH on two publicly available breast abnormality detection datasets using mammogram scans. Sensitivity of landmark based PH obtained is over 90% in both datasets for the detection of abnormal breast scans. Finally, experimental results give new insights on using different types of PD vectorizations which help in utilising PH in conjunction with machine learning classifiers.
  2. Confinement in Non-Abelian Lattice Gauge Theory via Persistent Homology (2022)

    Daniel Spitz, Julian M. Urban, Jan M. Pawlowski
    Abstract We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities, holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture of confinement. In particular, topological densities form spatial lumps which show signatures of the classical probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions are encoded in holonomy Lie algebra fields, following the semi-classical temperature dependence of the instanton appearance probability. Debye screening discriminating between electric and magnetic fields is visible in persistent homology and pronounced at large gauge coupling. All employed constructions are gauge-invariant without a priori assumptions on the configurations under study. This work showcases the versatility of persistent homology for statistical and quantum physics studies, barely explored to date.
  3. Topology Identifies Emerging Adaptive Mutations in SARS-CoV-2 (2021)

    Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas Ott
    Abstract The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive advantages (e.g. higher infectivity or immune evasion) by leveraging the large number of genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. However, the large number of currently available genomes precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations based on persistent homology. It identifies convergent events merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates collected since the beginning of the pandemic. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape, and for many adaptive mutations the topological signal precedes an increase in prevalence. We show that our method effectively identifies emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.
  4. Mapping Firms' Locations in Technological Space: A Topological Analysis of Patent Statistics (2020)

    Emerson G. Escolar, Yasuaki Hiraoka, Mitsuru Igami, Yasin Ozcan
    Abstract Where do firms innovate? Mapping their locations in technological space is difficult, because it is high dimensional and unstructured. We address this issue by using a method in computational topology called the Mapper algorithm, which combines local clustering with global reconstruction. We apply this method to a panel of 333 major firms’ patent portfolios in 1976–2005 across 430 technological areas. Results suggest the Mapper graph captures salient patterns in firms’ patenting histories, and our measures of their uniqueness (the length of “flares”) are correlated with firms’ financial performances in a statistically and economically significant manner. We then compare this approach with a widely used clustering method by Jaffe (1989) to highlight additional findings.
  5. Topological Data Analysis on Simple English Wikipedia Articles (2020)

    Matthew Wright, Xiaojun Zheng
    Abstract Single-parameter persistent homology, a key tool in topological data analysis, has been widely applied to data problems, with statistical techniques that quantify the significance of the results. In contrast, statistical techniques for two-parameter persistence, while highly desirable for real-world applications, have scarcely been considered. We present three statistical approaches for comparing geometric data using two-parameter persistent homology, and we demonstrate the applicability of these approaches on high-dimensional point-cloud data obtained from Simple English Wikipedia articles. These approaches rely on the Hilbert function, matching distance, and barcodes obtained from two-parameter persistence modules computed from the point-cloud data. We demonstrate the applicability of our methods by distinguishing certain subsets of the Wikipedia data, and by comparison with random data. Results include insights into the construction of null distributions and stability of our methods with respect to noisy data. Our statistical methods are broadly applicable for analysis of geometric data indexed by a real-valued parameter.
  6. Topological Data Analysis of Single-Cell Hi-C Contact Maps (2020)

    Mathieu Carrière, Raúl Rabadán
    Abstract Due to recent breakthroughs in high-throughput sequencing, it is now possible to use chromosome conformation capture (CCC) to understand the three dimensional conformation of DNA at the whole genome level, and to characterize it with the so-called contact maps. This is very useful since many biological processes are correlated with DNA folding, such as DNA transcription. However, the methods for the analysis of such conformations are still lacking mathematical guarantees and statistical power. To handle this issue, we propose to use the Mapper, which is a standard tool of Topological Data Analysis (TDA) that allows one to efficiently encode the inherent continuity and topology of underlying biological processes in data, in the form of a graph with various features such as branches and loops. In this article, we show how recent statistical techniques developed in TDA for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming from biological phenomena, such as the cell cyle, in datasets of CCC contact maps.
  7. The Growing Topology of the C. Elegans Connectome (2020)

    Alec Helm, Ann S. Blevins, Danielle S. Bassett
    Abstract Probing the developing neural circuitry in Caenorhabditis elegans has enhanced our understanding of nervous systems. The C. elegans connectome, like those of other species, is characterized by a rich club of densely connected neurons embedded within a small-world architecture. This organization of neuronal connections, captured by quantitative network statistics, provides insight into the system's capacity to perform integrative computations. Yet these network measures are limited in their ability to detect weakly connected motifs, such as topological cavities, that may support the systems capacity to perform segregated computations. We address this limitation by using persistent homology to track the evolution of topological cavities in the growing C. elegans connectome throughout neural development, and assess the degree to which the growing connectomes topology is resistant to biological noise. We show that the developing connectome topology is both relatively robust to changes in neuron birth times and not captured by similar growth models. Additionally, we quantify the consequence of a neurons specific birth time and ask if this metric tracks other biological properties of neurons. Our results suggest that the connectomes growing topology is a robust feature of the developing connectome that is distinct from other network properties, and that the growing topology is particularly sensitive to the exact birth times of a small set of predominantly motor neurons. By utilizing novel measurements that track biological features, we anticipate that our study will be helpful in the construction of more accurate models of neuronal development in C. elegans
  8. Unexpected Topology of the Temperature Fluctuations in the Cosmic Microwave Background (2019)

    Pratyush Pranav, Robert J. Adler, Thomas Buchert, Herbert Edelsbrunner, Bernard J. T. Jones, Armin Schwartzman, Hubert Wagner, Rien van de Weygaert
    Abstract We study the topology generated by the temperature fluctuations of the cosmic microwave background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the \textlessi\textgreaterPlanck\textlessi/\textgreater satellite with a thousand simulated maps generated according to the ΛCDM paradigm with Gaussian distributed fluctuations. The comparison is multi-scale, being performed on a sequence of degraded maps with mean pixel separation ranging from 0.05 to 7.33°. The survey of the CMB over 𝕊\textlesssup\textgreater2\textlesssup/\textgreater is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of “masks” is of importance, we introduce the concept of relative homology. The parametric \textlessi\textgreaterχ\textlessi/\textgreater\textlesssup\textgreater2\textlesssup/\textgreater-test shows differences between observations and simulations, yielding \textlessi\textgreaterp\textlessi/\textgreater-values at percent to less than permil levels roughly between 2 and 7°, with the difference in the number of components and holes peaking at more than 3\textlessi\textgreaterσ\textlessi/\textgreater sporadically at these scales. The highest observed deviation between the observations and simulations for \textlessi\textgreaterb\textlessi/\textgreater\textlesssub\textgreater0\textlesssub/\textgreater and \textlessi\textgreaterb\textlessi/\textgreater\textlesssub\textgreater1\textlesssub/\textgreater is approximately between 3\textlessi\textgreaterσ\textlessi/\textgreater and 4\textlessi\textgreaterσ\textlessi/\textgreater at scales of 3–7°. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66° in the literature, computed from independent measurements of the CMB temperature fluctuations by \textlessi\textgreaterPlanck\textlessi/\textgreater’s predecessor, the \textlessi\textgreaterWilkinson\textlessi/\textgreater Microwave Anisotropy Probe (WMAP) satellite. The mildly anomalous behaviour of the Euler characteristic is phenomenologically related to the strongly anomalous behaviour of components and holes, or the zeroth and first Betti numbers, respectively. Further, since these topological descriptors show consistent anomalous behaviour over independent measurements of \textlessi\textgreaterPlanck\textlessi/\textgreater and WMAP, instrumental and systematic errors may be an unlikely source. These are also the scales at which the observed maps exhibit low variance compared to the simulations, and approximately the range of scales at which the power spectrum exhibits a dip with respect to the theoretical model. Non-parametric tests show even stronger differences at almost all scales. Crucially, Gaussian simulations based on power-spectrum matching the characteristics of the observed dipped power spectrum are not able to resolve the anomaly. Understanding the origin of the anomalies in the CMB, whether cosmological in nature or arising due to late-time effects, is an extremely challenging task. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate the study of primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology, including topological defect models.
  9. The Topology of the Cosmic Web in Terms of Persistent Betti Numbers (2017)

    Pratyush Pranav, Herbert Edelsbrunner, Rien van de Weygaert, Gert Vegter, Michael Kerber, Bernard J. T. Jones, Mathijs Wintraecken
    Abstract Abstract. We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence of
  10. Statistical Topological Data Analysis - A Kernel Perspective (2015)

    Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich Bauer
    Abstract We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in two-sample hypothesis testing on synthetic as well as real-world data.