🍩 Database of Original & Non-Theoretical Uses of Topology

(found 8 matches in 0.002296s)
  1. Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology (2018)

    Mustafa Hajij, Bei Wang, Carlos Scheidegger, Paul Rosen
    Abstract Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into a metric space, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real-world datasets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether a persistence-based similarity measure satisfies a set of well-established, desirable properties for graph metrics.
  2. WDR76 Co-Localizes With Heterochromatin Related Proteins and Rapidly Responds to DNA Damage (2016)

    Joshua M. Gilmore, Mihaela E. Sardiu, Brad D. Groppe, Janet L. Thornton, Xingyu Liu, Gerald Dayebgadoh, Charles A. Banks, Brian D. Slaughter, Jay R. Unruh, Jerry L. Workman, Laurence Florens, Michael P. Washburn
    Abstract Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage.
  3. Weighted-Persistent-Homology-Based Machine Learning for RNA Flexibility Analysis (2020)

    Chi Seng Pun, Brandon Yung Sin Yong, Kelin Xia
    Abstract With the great significance of biomolecular flexibility in biomolecular dynamics and functional analysis, various experimental and theoretical models are developed. Experimentally, Debye-Waller factor, also known as B-factor, measures atomic mean-square displacement and is usually considered as an important measurement for flexibility. Theoretically, elastic network models, Gaussian network model, flexibility-rigidity model, and other computational models have been proposed for flexibility analysis by shedding light on the biomolecular inner topological structures. Recently, a topology-based machine learning model has been proposed. By using the features from persistent homology, this model achieves a remarkable high Pearson correlation coefficient (PCC) in protein B-factor prediction. Motivated by its success, we propose weighted-persistent-homology (WPH)-based machine learning (WPHML) models for RNA flexibility analysis. Our WPH is a newly-proposed model, which incorporate physical, chemical and biological information into topological measurements using a weight function. In particular, we use local persistent homology (LPH) to focus on the topological information of local regions. Our WPHML model is validated on a well-established RNA dataset, and numerical experiments show that our model can achieve a PCC of up to 0.5822. The comparison with the previous sequence-information-based learning models shows that a consistent improvement in performance by at least 10% is achieved in our current model.
  4. Using Topological Data Analysis for Diagnosis Pulmonary Embolism (2015)

    M. Rucco, E. Merelli, D. Herman, D. Ramanan, T. Petrossian, L. Falsetti, C. Nitti, A. Salvi
  5. Persistence-Based Pooling for Shape Pose Recognition (2016)

    Thomas Bonis, Maks Ovsjanikov, Steve Oudot, Frédéric Chazal
    Abstract In this paper, we propose a novel pooling approach for shape classification and recognition using the bag-of-words pipeline, based on topological persistence, a recent tool from Topological Data Analysis. Our technique extends the standard max-pooling, which summarizes the distribution of a visual feature with a single number, thereby losing any notion of spatiality. Instead, we propose to use topological persistence, and the derived persistence diagrams, to provide significantly more informative and spatially sensitive characterizations of the feature functions, which can lead to better recognition performance. Unfortunately, despite their conceptual appeal, persistence diagrams are difficult to handle, since they are not naturally represented as vectors in Euclidean space and even the standard metric, the bottleneck distance is not easy to compute. Furthermore, classical distances between diagrams, such as the bottleneck and Wasserstein distances, do not allow to build positive definite kernels that can be used for learning. To handle this issue, we provide a novel way to transform persistence diagrams into vectors, in which comparisons are trivial. Finally, we demonstrate the performance of our construction on the Non-Rigid 3D Human Models SHREC 2014 dataset, where we show that topological pooling can provide significant improvements over the standard pooling methods for the shape pose recognition within the bag-of-words pipeline.
  6. Branching and Circular Features in High Dimensional Data (2011)

    B. Wang, B. Summa, V. Pascucci, M. Vejdemo-Johansson
    Abstract Large observations and simulations in scientific research give rise to high-dimensional data sets that present many challenges and opportunities in data analysis and visualization. Researchers in application domains such as engineering, computational biology, climate study, imaging and motion capture are faced with the problem of how to discover compact representations of highdimensional data while preserving their intrinsic structure. In many applications, the original data is projected onto low-dimensional space via dimensionality reduction techniques prior to modeling. One problem with this approach is that the projection step in the process can fail to preserve structure in the data that is only apparent in high dimensions. Conversely, such techniques may create structural illusions in the projection, implying structure not present in the original high-dimensional data. Our solution is to utilize topological techniques to recover important structures in high-dimensional data that contains non-trivial topology. Specifically, we are interested in high-dimensional branching structures. We construct local circle-valued coordinate functions to represent such features. Subsequently, we perform dimensionality reduction on the data while ensuring such structures are visually preserved. Additionally, we study the effects of global circular structures on visualizations. Our results reveal never-before-seen structures on real-world data sets from a variety of applications.
  7. Topology Identifies Emerging Adaptive Mutations in SARS-CoV-2 (2021)

    Michael Bleher, Lukas Hahn, Juan Angel Patino-Galindo, Mathieu Carriere, Ulrich Bauer, Raul Rabadan, Andreas Ott
    Abstract The COVID-19 pandemic has lead to a worldwide effort to characterize its evolution through the mapping of mutations in the genome of the coronavirus SARS-CoV-2. Ideally, one would like to quickly identify new mutations that could confer adaptive advantages (e.g. higher infectivity or immune evasion) by leveraging the large number of genomes. One way of identifying adaptive mutations is by looking at convergent mutations, mutations in the same genomic position that occur independently. However, the large number of currently available genomes precludes the efficient use of phylogeny-based techniques. Here, we establish a fast and scalable Topological Data Analysis approach for the early warning and surveillance of emerging adaptive mutations based on persistent homology. It identifies convergent events merely by their topological footprint and thus overcomes limitations of current phylogenetic inference techniques. This allows for an unbiased and rapid analysis of large viral datasets. We introduce a new topological measure for convergent evolution and apply it to the GISAID dataset as of February 2021, comprising 303,651 high-quality SARS-CoV-2 isolates collected since the beginning of the pandemic. We find that topologically salient mutations on the receptor-binding domain appear in several variants of concern and are linked with an increase in infectivity and immune escape, and for many adaptive mutations the topological signal precedes an increase in prevalence. We show that our method effectively identifies emerging adaptive mutations at an early stage. By localizing topological signals in the dataset, we extract geo-temporal information about the early occurrence of emerging adaptive mutations. The identification of these mutations can help to develop an alert system to monitor mutations of concern and guide experimentalists to focus the study of specific circulating variants.