🍩 Database of Original & Non-Theoretical Uses of Topology

(found 9 matches in 0.001897s)
  1. Spatial Embedding Imposes Constraints on Neuronal Network Architectures (2018)

    Jennifer Stiso, Danielle S. Bassett
    Abstract Recent progress towards understanding circuit function has capitalized on tools from network science to parsimoniously describe the spatiotemporal architecture of neural systems. Such tools often address systems topology divorced from its physical instantiation. Nevertheless, for embedded systems such as the brain, physical laws directly constrain the processes of network growth, development, and function. We review here the rules imposed by the space and volume of the brain on the development of neuronal networks, and show that these rules give rise to a specific set of complex topologies. These rules also affect the repertoire of neural dynamics that can emerge from the system, and thereby inform our understanding of network dysfunction in disease. We close by discussing new tools and models to delineate the effects of spatial embedding.
  2. When Remote Sensing Meets Topological Data Analysis (2018)

    Ludovic Duponchel
    Abstract Author Summary: Hyperspectral remote sensing plays an increasingly important role in many scientific domains and everyday life problems. Indeed, this imaging concept ends up in applications as varied as catching tax-evaders red-handed by locating new construction and building alterations, searching for aircraft and saving lives after fatal crashes, detecting oil spills for marine life and environmental preservation, spying on enemies with reconnaissance satellites, watching algae grow as an indicator of environmental health, forecasting weather to warn about natural disasters and much more. From an instrumental point of view, we can say that the actual spectrometers have rather good characteristics, even if we can always increase spatial resolution and spectral range. In order to extract ever more information from such experiments and develop new applications, we must, therefore, propose multivariate data analysis tools able to capture the shape of data sets and their specific features. Nevertheless, actual methods often impose a data model which implicitly defines the geometry of the data set. The aim of the paper is thus to introduce the concept of topological data analysis in the framework of remote sensing, making no assumptions about the global shape of the data set, but also allowing the capture of its local features.
  3. Using Multidimensional Topological Data Analysis to Identify Traits of Hip Osteoarthritis (2018)

    Jasmine Rossi‐deVries, Valentina Pedoia, Michael A. Samaan, Adam R. Ferguson, Richard B. Souza, Sharmila Majumdar
    Abstract Background Osteoarthritis (OA) is a multifaceted disease with many variables affecting diagnosis and progression. Topological data analysis (TDA) is a state-of-the-art big data analytics tool that can combine all variables into multidimensional space. TDA is used to simultaneously analyze imaging and gait analysis techniques. Purpose To identify biochemical and biomechanical biomarkers able to classify different disease progression phenotypes in subjects with and without radiographic signs of hip OA. Study Type Longitudinal study for comparison of progressive and nonprogressive subjects. Population In all, 102 subjects with and without radiographic signs of hip osteoarthritis. Field Strength/Sequence 3T, SPGR 3D MAPSS T1ρ/T2, intermediate-weighted fat-suppressed fast spin-echo (FSE). Assessment Multidimensional data analysis including cartilage composition, bone shape, Kellgren–Lawrence (KL) classification of osteoarthritis, scoring hip osteoarthritis with MRI (SHOMRI), hip disability and osteoarthritis outcome score (HOOS). Statistical Tests Analysis done using TDA, Kolmogorov–Smirnov (KS) testing, and Benjamini-Hochberg to rank P-value results to correct for multiple comparisons. Results Subjects in the later stages of the disease had an increased SHOMRI score (P \textless 0.0001), increased KL (P = 0.0012), and older age (P \textless 0.0001). Subjects in the healthier group showed intact cartilage and less pain. Subjects found between these two groups had a range of symptoms. Analysis of this subgroup identified knee biomechanics (P \textless 0.0001) as an initial marker of the disease that is noticeable before the morphological progression and degeneration. Further analysis of an OA subgroup with femoroacetabular impingement (FAI) showed anterior labral tears to be the most significant marker (P = 0.0017) between those FAI subjects with and without OA symptoms. Data Conclusion The data-driven analysis obtained with TDA proposes new phenotypes of these subjects that partially overlap with the radiographic-based classical disease status classification and also shows the potential for further examination of an early onset biomechanical intervention. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1046–1058.
  4. MRI and Biomechanics Multidimensional Data Analysis Reveals R2 -R1ρ as an Early Predictor of Cartilage Lesion Progression in Knee Osteoarthritis (2017)

    Valentina Pedoia, Jenny Haefeli, Kazuhito Morioka, Hsiang-Ling Teng, Lorenzo Nardo, Richard B. Souza, Adam R. Ferguson, Sharmila Majumdar
    Abstract PURPOSE: To couple quantitative compositional MRI, gait analysis, and machine learning multidimensional data analysis to study osteoarthritis (OA). OA is a multifactorial disorder accompanied by biochemical and morphological changes in the articular cartilage, modulated by skeletal biomechanics and gait. While we can now acquire detailed information about the knee joint structure and function, we are not yet able to leverage the multifactorial factors for diagnosis and disease management of knee OA. MATERIALS AND METHODS: We mapped 178 subjects in a multidimensional space integrating: demographic, clinical information, gait kinematics and kinetics, cartilage compositional T1ρ and T2 and R2 -R1ρ (1/T2 -1/T1ρ ) acquired at 3T and whole-organ magnetic resonance imaging score morphological grading. Topological data analysis (TDA) and Kolmogorov-Smirnov test were adopted for data integration, analysis, and hypothesis generation. Regression models were used for hypothesis testing. RESULTS: The results of the TDA showed a network composed of three main patient subpopulations, thus potentially identifying new phenotypes. T2 and T1ρ values (T2 lateral femur P = 1.45*10-8 , T1ρ medial tibia P = 1.05*10-5 ), the presence of femoral cartilage defects (P = 0.0013), lesions in the meniscus body (P = 0.0035), and race (P = 2.44*10-4 ) were key markers in the subpopulation classification. Within one of the subpopulations we observed an association between the composite metric R2 -R1ρ and the longitudinal progression of cartilage lesions. CONCLUSION: The analysis presented demonstrates some of the complex multitissue biochemical and biomechanical interactions that define joint degeneration and OA using a multidimensional approach, and potentially indicates that R2 -R1ρ may be an imaging biomarker for early OA. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:78-90.
  5. Uncovering Precision Phenotype-Biomarker Associations in Traumatic Brain Injury Using Topological Data Analysis (2017)

    Jessica L. Nielson, Shelly R. Cooper, John K. Yue, Marco D. Sorani, Tomoo Inoue, Esther L. Yuh, Pratik Mukherjee, Tanya C. Petrossian, Jesse Paquette, Pek Y. Lum, Gunnar E. Carlsson, Mary J. Vassar, Hester F. Lingsma, Wayne A. Gordon, Alex B. Valadka, David O. Okonkwo, Geoffrey T. Manley, Adam R. Ferguson, Track-Tbi Investigators
    Abstract Background Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. Methods and findings The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). Conclusions TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. Trial Registration ClinicalTrials.gov Identifier NCT01565551
  6. Visualizing Emergent Identity of Assemblages in the Consumer Internet of Things: A Topological Data Analysis Approach (2016)

    Thomas Novak, Donna L. Hoffman
    Abstract The identity of a consumer Internet of Things (IoT) assemblage emerges through a historical process of ongoing interactions among consumers, smart devices, and digital information. Topological Data Analysis (TDA), consistent with mathematical aspects of assemblage theory, is used to visualize the underlying possibility space from which individual IoT assemblages emerge.
  7. Tracking Resilience to Infections by Mapping Disease Space (2016)

    Brenda Y. Torres, Jose Henrique M. Oliveira, Ann Thomas Tate, Poonam Rath, Katherine Cumnock, David S. Schneider
    Abstract Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels.
  8. WDR76 Co-Localizes With Heterochromatin Related Proteins and Rapidly Responds to DNA Damage (2016)

    Joshua M. Gilmore, Mihaela E. Sardiu, Brad D. Groppe, Janet L. Thornton, Xingyu Liu, Gerald Dayebgadoh, Charles A. Banks, Brian D. Slaughter, Jay R. Unruh, Jerry L. Workman, Laurence Florens, Michael P. Washburn
    Abstract Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage.
  9. Unifying Immunology With Informatics and Multiscale Biology (2014)

    Brian A Kidd, Lauren A Peters, Eric E Schadt, Joel T Dudley
    Abstract The immune system is a highly complex and dynamic system. Historically, the most common scientific and clinical practice has been to evaluate its individual components. This kind of approach cannot always expose the interconnecting pathways that control immune-system responses and does not reveal how the immune system works across multiple biological systems and scales. High-throughput technologies can be used to measure thousands of parameters of the immune system at a genome-wide scale. These system-wide surveys yield massive amounts of quantitative data that provide a means to monitor and probe immune-system function. New integrative analyses can help synthesize and transform these data into valuable biological insight. Here we review some of the computational analysis tools for high-dimensional data and how they can be applied to immunology.