🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001171s)
  1. Severe Slugging Flow Identification From Topological Indicators (2022)

    Simone Casolo
    Abstract In this work, topological data analysis is used to identify the onset of severe slug flow in offshore petroleum production systems. Severe slugging is a multiphase flow regime known to be very inefficient and potentially harmful to process equipment and it is characterized by large oscillations in the production fluid pressure. Time series from pressure sensors in subsea oil wells are processed by means of Takens embedding to produce point clouds of data. Embedded sensor data is then analyzed using persistent homology to obtain topological indicators capable of revealing the occurrence of severe slugging in a condition-based monitoring approach. A large dataset of well events consisting of both real and simulated data is used to demonstrate the possibilty of authomatizing severe slugging detection from live data via topological data analysis. Methods based on persistence diagrams are shown to accurately identify severe slugging and to classify different flow regimes from pressure signals of producing wells with supervised machine learning.
  2. Testing Topological Data Analysis for Condition Monitoring of Wind Turbines (2024)

    Simone Casolo, Alexander Stasik, Zhenyou Zhang, Signe Riemer-Sørensen
    Abstract We present an investigation of how topological data analysis (TDA) can be applied to condition-based monitoring (CBM) of wind turbines for energy generation.TDA is a branch of data analysis focusing on extracting mean- ingful information from complex datasets by analyzing their structure in state space and computing their underlying topo- logical features. By representing data in a high-dimensional state space, TDA enables the identification of patterns, anoma- lies, and trends in the data that may not be apparent through traditional signal processing methods. For this study, wind turbine data was acquired from a wind park in Norway via standard vibration sensors at different lo- cations of the turbine’s gearbox. Both the vibration acceler- ation data and its frequency spectra were recorded at infre- quent intervals for a few seconds at high frequency and fail- ure events were labelled as either gear-tooth or ball-bearing failures. The data processing and analysis are based on a pipeline where the time series data is first split into intervals and then transformed into multi-dimensional point clouds via a time-delay embedding. The shape of the point cloud is an- alyzed with topological methods such as persistent homol- ogy to generate topology-based key health indicators based on Betti numbers, information entropy and signal persistence. Such indicators are tested for CBM and diagnosis (fault de- tection) to identify faults in wind turbines and classify them accordingly. Topological indicators are shown to be an in- teresting alternative for failure identification and diagnosis of operational failures in wind turbines.