🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001586s)
  1. Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)

    Woojin Kim, Facundo Memoli
    Abstract When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.
  2. Topic Detection in Twitter Using Topology Data Analysis (2015)

    Pablo Torres-Tramón, Hugo Hromic, Bahareh Rahmanzadeh Heravi
    Abstract The massive volume of content generated by social media greatly exceeds human capacity to manually process this data in order to identify topics of interest. As a solution, various automated topic detection approaches have been proposed, most of which are based on document clustering and burst detection. These approaches normally represent textual features in standard n-dimensional Euclidean metric spaces. However, in these cases, directly filtering noisy documents is challenging for topic detection. Instead we propose Topol, a topic detection method based on Topology Data Analysis (TDA) that transforms the Euclidean feature space into a topological space where the shapes of noisy irrelevant documents are much easier to distinguish from topically-relevant documents. This topological space is organised in a network according to the connectivity of the points, i.e. the documents, and by only filtering based on the size of the connected components we obtain competitive results compared to other state of the art topic detection methods.