🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.001266s)
  1. Topological Biomarkers for Real-Time Detection of Epileptic Seizures (2022)

    Ximena Fernández, Diego Mateos
    Abstract Automated seizure detection is a fundamental problem in computational neuroscience towards diagnosis and treatment's improvement of epileptic disease. We propose a real-time computational method for automated tracking and detection of epileptic seizures from raw neurophysiological recordings. Our mechanism is based on the topological analysis of the sliding-window embedding of the time series derived from simultaneously recorded channels. We extract topological biomarkers from the signals via the computation of the persistent homology of time-evolving topological spaces. Remarkably, the proposed biomarkers robustly captures the change in the brain dynamics during the ictal state. We apply our methods in different types of signals including scalp and intracranial EEG and MEG, in patients during interictal and ictal states, showing high accuracy in a range of clinical situations.
  2. Topological Data Analysis of C. Elegans Locomotion and Behavior (2021)

    Ashleigh Thomas, Kathleen Bates, Alex Elchesen, Iryna Hartsock, Hang Lu, Peter Bubenik
    Abstract Video of nematodes/roundworms was analyzed using persistent homology to study locomotion and behavior. In each frame, an organism's body posture was represented by a high-dimensional vector. By concatenating points in fixed-duration segments of this time series, we created a sliding window embedding (sometimes called a time delay embedding) where each point corresponds to a sequence of postures of an organism. Persistent homology on the points in this time series detected behaviors and comparisons of these persistent homology computations detected variation in their corresponding behaviors. We used average persistence landscapes and machine learning techniques to study changes in locomotion and behavior in varying environments.
  3. Topological Eulerian Synthesis of Slow Motion Periodic Videos (2018)

    Christopher Tralie, Matthew Berger
    Abstract We consider the problem of taking a video that is comprised of multiple periods of repetitive motion, and reordering the frames of the video into a single period, producing a detailed, single cycle video of motion. This problem is challenging, as such videos often contain noise, drift due to camera motion and from cycle to cycle, and irrelevant background motion/occlusions, and these factors can confound the relevant periodic motion we seek in the video. To address these issues in a simple and efficient manner, we introduce a tracking free Eulerian approach for synthesizing a single cycle of motion. Our approach is geometric: we treat each frame as a point in high-dimensional Euclidean space, and analyze the sliding window embedding formed by this sequence of points, which yields samples along a topological loop regardless of the type of periodic motion. We combine tools from topological data analysis and spectral geometric analysis to estimate the phase of each window, and we exploit the sliding window structure to robustly reorder frames. We show quantitative results that highlight the robustness of our technique to camera shake, noise, and occlusions, and qualitative results of single-cycle motion synthesis across a variety of scenarios.
  4. Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis (2015)

    Jose A. Perea, John Harer
    Abstract We develop in this paper a theoretical framework for the topological study of time series data. Broadly speaking, we describe geometrical and topological properties of sliding window embeddings, as seen through the lens of persistent homology. In particular, we show that maximum persistence at the point-cloud level can be used to quantify periodicity at the signal level, prove structural and convergence theorems for the resulting persistence diagrams, and derive estimates for their dependency on window size and embedding dimension. We apply this methodology to quantifying periodicity in synthetic data sets and compare the results with those obtained using state-of-the-art methods in gene expression analysis. We call this new method SW1PerS, which stands for Sliding Windows and 1-Dimensional Persistence Scoring.