🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.001218s)
  1. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition (2007)

    Gurjeet Singh, Facundo Mémoli, Gunnar Carlsson
    Abstract We present a computational method for extracting simple descriptions of high dimensional data sets in the form of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided by a set of functions defined on the data. The proposed method is not dependent on any particular clustering algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few sample applications in which simple descriptions of the data present important information about its structure.
  2. Topological Persistence Machine of Phase Transitions (2020)

    Quoc Hoan Tran, Mark Chen, Yoshihiko Hasegawa
    Abstract The study of phase transitions from experimental data becomes challenging, especially when little prior knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the shape of data and has recently achieved success in detecting structural transitions in material science such as glass-liquid transition. However, data obtained from physical states may not have explicit shapes as structural materials. We propose a general framework called topological persistence machine to construct the shape of data from correlations in states; hence decipher phase transitions via the qualitative changes of the shape. Our framework enables an effective and unified approach in phase transition analysis. We demonstrate the impact in highly precise detection of Berezinskii-Kosterlitz-Thouless phase transitions in the classical XY model, and quantum phase transition in the transverse Ising model and Bose-Hubbard model. Intriguingly, these phase transitions have proven to be notoriously difficult in traditional methods but can be characterized in our framework without requiring prior knowledge about phases. Our approach is thus expected applicable and brings a remarkable perspective for exploring phases of experimental physical systems.
  3. Topology of Viral Evolution (2013)

    Joseph Minhow Chan, Gunnar Carlsson, Raul Rabadan
    Abstract The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.