🍩 Database of Original & Non-Theoretical Uses of Topology

(found 5 matches in 0.001636s)
  1. Persistent Homology Based Graph Convolution Network for Fine-Grained 3D Shape Segmentation (2021)

    Chi-Chong Wong, Chi-Man Vong
    Abstract Fine-grained 3D segmentation is an important task in 3D object understanding, especially in applications such as intelligent manufacturing or parts analysis for 3D objects. However, many challenges involved in such problem are yet to be solved, such as i) interpreting the complex structures located in different regions for 3D objects; ii) capturing fine-grained structures with sufficient topology correctness. Current deep learning and graph machine learning methods fail to tackle such challenges and thus provide inferior performance in fine-grained 3D analysis. In this work, methods in topological data analysis are incorporated with geometric deep learning model for the task of fine-grained segmentation for 3D objects. We propose a novel neural network model called Persistent Homology based Graph Convolution Network (PHGCN), which i) integrates persistent homology into graph convolution network to capture multi-scale structural information that can accurately represent complex structures for 3D objects; ii) applies a novel Persistence Diagram Loss (ℒPD) that provides sufficient topology correctness for segmentation over the fine-grained structures. Extensive experiments on fine-grained 3D segmentation validate the effectiveness of the proposed PHGCN model and show significant improvements over current state-of-the-art methods.
  2. Topology-Aware Segmentation Using Discrete Morse Theory (2021)

    Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, Chao Chen
    Abstract In the segmentation of fine-scale structures from natural and biomedical images, per-pixel accuracy is not the only metric of concern. Topological correctness, such as vessel connectivity and membrane closure, is crucial for downstream analysis tasks. In this paper, we propose a new approach to train deep image segmentation networks for better topological accuracy. In particular, leveraging the power of discrete Morse theory (DMT), we identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy. Trained with a novel loss based on these global structures, the network performance is significantly improved especially near topologically challenging locations (such as weak spots of connections and membranes). On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
  3. TDAExplore: Quantitative Analysis of Fluorescence Microscopy Images Through Topology-Based Machine Learning (2021)

    Parker Edwards, Kristen Skruber, Nikola Milićević, James B. Heidings, Tracy-Ann Read, Peter Bubenik, Eric A. Vitriol
    Abstract Recent advances in machine learning have greatly enhanced automatic methods to extract information from fluorescence microscopy data. However, current machine-learning-based models can require hundreds to thousands of images to train, and the most readily accessible models classify images without describing which parts of an image contributed to classification. Here, we introduce TDAExplore, a machine learning image analysis pipeline based on topological data analysis. It can classify different types of cellular perturbations after training with only 20–30 high-resolution images and performs robustly on images from multiple subjects and microscopy modes. Using only images and whole-image labels for training, TDAExplore provides quantitative, spatial information, characterizing which image regions contribute to classification. Computational requirements to train TDAExplore models are modest and a standard PC can perform training with minimal user input. TDAExplore is therefore an accessible, powerful option for obtaining quantitative information about imaging data in a wide variety of applications.
  4. Optimal Topological Cycles and Their Application in Cardiac Trabeculae Restoration (2017)

    Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris Metaxas, Leon Axel
    Abstract In cardiac image analysis, it is important yet challenging to reconstruct the trabeculae, namely, fine muscle columns whose ends are attached to the ventricular walls. To extract these fine structures, traditional image segmentation methods are insufficient. In this paper, we propose a novel method to jointly detect salient topological handles and compute the optimal representations of them. The detected handles are considered hypothetical trabeculae structures. They are further screened using a classifier and are then included in the final segmentation. We show in experiments the significance of our contribution compared with previous standard segmentation methods without topological priors, as well as with previous topological method in which non-optimal representations of topological handles are used.