🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.00091s)
  1. Topological Data Analysis in Medical Imaging: Current State of the Art (2023)

    Yashbir Singh, Colleen M. Farrelly, Quincy A. Hathaway, Tim Leiner, Jaidip Jagtap, Gunnar E. Carlsson, Bradley J. Erickson
    Abstract Machine learning, and especially deep learning, is rapidly gaining acceptance and clinical usage in a wide range of image analysis applications and is regarded as providing high performance in detecting anatomical structures and identification and classification of patterns of disease in medical images. However, there are many roadblocks to the widespread implementation of machine learning in clinical image analysis, including differences in data capture leading to different measurements, high dimensionality of imaging and other medical data, and the black-box nature of machine learning, with a lack of insight into relevant features. Techniques such as radiomics have been used in traditional machine learning approaches to model the mathematical relationships between adjacent pixels in an image and provide an explainable framework for clinicians and researchers. Newer paradigms, such as topological data analysis (TDA), have recently been adopted to design and develop innovative image analysis schemes that go beyond the abilities of pixel-to-pixel comparisons. TDA can automatically construct filtrations of topological shapes of image texture through a technique known as persistent homology (PH); these features can then be fed into machine learning models that provide explainable outputs and can distinguish different image classes in a computationally more efficient way, when compared to other currently used methods. The aim of this review is to introduce PH and its variants and to review TDA’s recent successes in medical imaging studies.
  2. Advancing Precision Medicine: Algebraic Topology and Differential Geometry in Radiology and Computational Pathology (2024)

    Richard M. Levenson, Yashbir Singh, Bastian Rieck, Ashok Choudhary, Gunnar Carlsson, Deepa Sarkar, Quincy A. Hathaway, Colleen Farrelly, Jennifer Rozenblit, Prateek Prasanna, Bradley Erickson
    Abstract Precision medicine aims to provide personalized care based on individual patient characteristics, rather than guideline-directed therapies for groups of diseases or patient demographics. Images—both radiology- and pathology-derived—are a major source of information on presence, type, and status of disease. Exploring the mathematical relationship of pixels in medical imaging (“radiomics”) and cellular-scale structures in digital pathology slides (“pathomics”) offers powerful tools for extracting both qualitative and, increasingly, quantitative data. These analytical approaches, however, may be significantly enhanced by applying additional methods arising from fields of mathematics such as differential geometry and algebraic topology that remain underexplored in this context. Geometry’s strength lies in its ability to provide precise local measurements, such as curvature, that can be crucial for identifying abnormalities at multiple spatial levels. These measurements can augment the quantitative features extracted in conventional radiomics, leading to more nuanced diagnostics. By contrast, topology serves as a robust shape descriptor, capturing essential features such as connected components and holes. The field of topological data analysis was initially founded to explore the shape of data, with functional network connectivity in the brain being a prominent example. Increasingly, its tools are now being used to explore organizational patterns of physical structures in medical images and digitized pathology slides. By leveraging tools from both differential geometry and algebraic topology, researchers and clinicians may be able to obtain a more comprehensive, multi-layered understanding of medical images and contribute to precision medicine’s armamentarium