🍩 Database of Original & Non-Theoretical Uses of Topology
(found 10 matches in 0.0021s)
-
-
Transfer Learning for Autonomous Chatter Detection in Machining (2022)
Melih C. Yesilli, Firas A. Khasawneh, Brian P. MannAbstract
Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter detection using machine learning has been an active research area over the last decade. Three challenges can be identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of the universality of chatter features across different processes, the need for automating feature extraction, and the existence of limited data for each specific workpiece-machine tool combination, e.g., when machining one-off products. These three challenges can be grouped under the umbrella of transfer learning, which is concerned with studying how knowledge gained from one setting can be leveraged to obtain information in new settings. This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted from turning and milling experiments with different cutting configurations. The studied methods include Fast Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), and decomposition based tools such as Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). We also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time series based on Discrete Time Warping (DTW). We evaluate transfer learning potential of each approach by training and testing both within and across the turning and milling data sets. Four supervised classification algorithms are explored: support vector machine (SVM), logistic regression, random forest classification, and gradient boosting. In addition to accuracy, we also comment on the automation potential of feature extraction for each approach which is integral to creating autonomous manufacturing centers. Our results show that carefully chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches can provide accuracies and F1-scores on par with the time-frequency methods without the need for manual preprocessing via completely automatic pipelines. Further, we discovered that the DTW approach outperforms all other methods when trained using the milling data and tested on the turning data. Therefore, TDA and DTW approaches may be preferred over the time-frequency-based approaches for fully automated chatter detection schemes. DTW and TDA also can be more advantageous when pooling data from either limited workpiece-machine tool combinations, or from small data sets of one-off processes. -
Topological Detection of Phenomenological Bifurcations With Unreliable Kernel Density Estimates (2024)
Sunia Tanweer, Firas A. KhasawnehAbstract
Phenomenological (P-type) bifurcations are qualitative changes in stochastic dynamical systems whereby the stationary probability density function (PDF) changes its topology. The current state of the art for detecting these bifurcations requires reliable kernel density estimates computed from an ensemble of system realizations. However, in several real world signals such as Big Data, only a single system realization is available—making it impossible to estimate a reliable kernel density. This study presents an approach for detecting P-type bifurcations using unreliable density estimates. The approach creates an ensemble of objects from Topological Data Analysis (TDA) called persistence diagrams from the system’s sole realization and statistically analyzes the resulting set. We compare several methods for replicating the original persistence diagram including Gibbs point process modelling, Pairwise Interaction Point Modelling, and subsampling. We show that for the purpose of predicting a bifurcation, the simple method of subsampling exceeds the other two methods of point process modelling in performance. -
Robust Crossings Detection in Noisy Signals Using Topological Signal Processing (2024)
Sunia Tanweer, Firas A. Khasawneh, Elizabeth MunchAbstract
This article explores a novel method of bracketing zero-crossings for both 1-D functions and discretely sampled time series by the application of 0-D persistent homology from algebraic topology. We introduce an algorithm and demonstrate its capability of detecting crossing in noisy signals across various sampling frequencies. Compared to other software-based methods for crossing-detection in signals, our approach is typically faster, shows a higher accuracy, and has the unique ability to identify all roots within the provided interval instead of detecting only one out of all. We also discuss different options for mathematically estimating the persistence threshold— a parameter which impacts and controls the correct bracketing of roots. Finally, we explore the potential of extending our algorithm to higher dimensions. -
Acute Lymphoblastic Leukemia Classification Using Persistent Homology (2024)
Waqar Hussain Shah, Abdullah Baloch, Rider Jaimes-Reátegui, Sohail Iqbal, Syeda Rafia Fatima, Alexander N. PisarchikAbstract
Acute Lymphoblastic Leukemia (ALL) is a prevalent form of childhood blood cancer characterized by the proliferation of immature white blood cells that rapidly replace normal cells in the bone marrow. The exponential growth of these leukemic cells can be fatal if not treated promptly. Classifying lymphoblasts and healthy cells poses a significant challenge, even for domain experts, due to their morphological similarities. Automated computer analysis of ALL can provide substantial support in this domain and potentially save numerous lives. In this paper, we propose a novel classification approach that involves analyzing shapes and extracting topological features of ALL cells. We employ persistent homology to capture these topological features. Our technique accurately and efficiently detects and classifies leukemia blast cells, achieving a recall of 98.2% and an F1-score of 94.6%. This approach has the potential to significantly enhance leukemia diagnosis and therapy. -
Efficient Planning of Multi-Robot Collective Transport Using Graph Reinforcement Learning With Higher Order Topological Abstraction (2023)
Steve Paul, Wenyuan Li, Brian Smyth, Yuzhou Chen, Yulia Gel, Souma ChowdhuryAbstract
Efficient multi-robot task allocation (MRTA) is fundamental to various time-sensitive applications such as disaster response, warehouse operations, and construction. This paper tackles a particular class of these problems that we call MRTA-collective transport or MRTA-CT - here tasks present varying workloads and deadlines, and robots are subject to flight range, communication range, and payload constraints. For large instances of these problems involving 100s-1000's of tasks and 10s-100s of robots, traditional non-learning solvers are often time-inefficient, and emerging learning-based policies do not scale well to larger-sized problems without costly retraining. To address this gap, we use a recently proposed encoder-decoder graph neural network involving Capsule networks and multi-head attention mechanism, and innovatively add topological descriptors (TD) as new features to improve transferability to unseen problems of similar and larger size. Persistent homology is used to derive the TD, and proximal policy optimization is used to train our TD-augmented graph neural network. The resulting policy model compares favorably to state-of-the-art non-learning baselines while being much faster. The benefit of using TD is readily evident when scaling to test problems of size larger than those used in training. -
A Topological Framework for Identifying Phenomenological Bifurcations in Stochastic Dynamical Systems (2024)
Sunia Tanweer, Firas A. Khasawneh, Elizabeth Munch, Joshua R. TempelmanAbstract
Changes in the parameters of dynamical systems can cause the state of the system to shift between different qualitative regimes. These shifts, known as bifurcations, are critical to study as they can indicate when the system is about to undergo harmful changes in its behavior. In stochastic dynamical systems, there is particular interest in P-type (phenomenological) bifurcations, which can include transitions from a monostable state to multi-stable states, the appearance of stochastic limit cycles and other features in the probability density function (PDF) of the system’s state. Current practices are limited to systems with small state spaces, cannot detect all possible behaviors of the PDFs and mandate human intervention for visually identifying the change in the PDF. In contrast, this study presents a new approach based on Topological Data Analysis that uses superlevel persistence to mathematically quantify P-type bifurcations in stochastic systems through a “homological bifurcation plot”—which shows the changing ranks of 0th and 1st homology groups, through Betti vectors. Using these plots, we demonstrate the successful detection of P-bifurcations on the stochastic Duffing, Raleigh-Vander Pol and Quintic Oscillators given their analytical PDFs, and elaborate on how to generate an estimated homological bifurcation plot given a kernel density estimate (KDE) of these systems by employing a tool for finding topological consistency between PDFs and KDEs. -
Exploring Surface Texture Quantification in Piezo Vibration Striking Treatment (PVST) Using Topological Measures (2022)
Melih C. Yesilli, Max M. Chumley, Jisheng Chen, Firas A. Khasawneh, Yang GuoAbstract
Abstract. Surface texture influences wear and tribological properties of manufactured parts, and it plays a critical role in end-user products. Therefore, quantifying the order or structure of a manufactured surface provides important information on the quality and life expectancy of the product. Although texture can be intentionally introduced to enhance aesthetics or to satisfy a design function, sometimes it is an inevitable byproduct of surface treatment processes such as Piezo Vibration Striking Treatment (PVST). Measures of order for surfaces have been characterized using statistical, spectral, and geometric approaches. For nearly hexagonal lattices, topological tools have also been used to measure the surface order. This paper explores utilizing tools from Topological Data Analysis for measuring surface texture. We compute measures of order based on optical digital microscope images of surfaces treated using PVST. These measures are applied to the grid obtained from estimating the centers of tool impacts, and they quantify the grid’s deviations from the nominal one. Our results show that TDA provides a convenient framework for characterization of pattern type that bypasses some limitations of existing tools such as difficult manual processing of the data and the need for an expert user to analyze and interpret the surface images. -
Pattern Characterization Using Topological Data Analysis: Application to Piezo Vibration Striking Treatment (2023)
Max M. Chumley, Melih C. Yesilli, Jisheng Chen, Firas A. Khasawneh, Yang GuoAbstract
Quantifying patterns in visual or tactile textures provides important information about the process or phenomena that generated these patterns. In manufacturing, these patterns can be intentionally introduced as a design feature, or they can be a byproduct of a specific process. Since surface texture has significant impact on the mechanical properties and the longevity of the workpiece, it is important to develop tools for quantifying surface patterns and, when applicable, comparing them to their nominal counterparts. While existing tools may be able to indicate the existence of a pattern, they typically do not provide more information about the pattern structure, or how much it deviates from a nominal pattern. Further, prior works do not provide automatic or algorithmic approaches for quantifying other pattern characteristics such as depths’ consistency, and variations in the pattern motifs at different level sets. This paper leverages persistent homology from Topological Data Analysis (TDA) to derive noise-robust scores for quantifying motifs’ depth and roundness in a pattern. Specifically, sublevel persistence is used to derive scores that quantify the consistency of indentation depths at any level set in Piezo Vibration Striking Treatment (PVST) surfaces. Moreover, we combine sublevel persistence with the distance transform to quantify the consistency of the indentation radii, and to compare them with the nominal ones. Although the tool in our PVST experiments had a semi-spherical profile, we present a generalization of our approach to tools/motifs of arbitrary shapes thus making our method applicable to other pattern-generating manufacturing processes. -
Determining Clinically Relevant Features in Cytometry Data Using Persistent Homology (2022)
Soham Mukherjee, Darren Wethington, Tamal K. Dey, Jayajit DasAbstract
Cytometry experiments yield high-dimensional point cloud data that is difficult to interpret manually. Boolean gating techniques coupled with comparisons of relative abundances of cellular subsets is the current standard for cytometry data analysis. However, this approach is unable to capture more subtle topological features hidden in data, especially if those features are further masked by data transforms or significant batch effects or donor-to-donor variations in clinical data. We present that persistent homology, a mathematical structure that summarizes the topological features, can distinguish different sources of data, such as from groups of healthy donors or patients, effectively. Analysis of publicly available cytometry data describing non-naïve CD8+ T cells in COVID-19 patients and healthy controls shows that systematic structural differences exist between single cell protein expressions in COVID-19 patients and healthy controls. We identify proteins of interest by a decision-tree based classifier, sample points randomly and compute persistence diagrams from these sampled points. The resulting persistence diagrams identify regions in cytometry datasets of varying density and identify protruded structures such as ‘elbows’. We compute Wasserstein distances between these persistence diagrams for random pairs of healthy controls and COVID-19 patients and find that systematic structural differences exist between COVID-19 patients and healthy controls in the expression data for T-bet, Eomes, and Ki-67. Further analysis shows that expression of T-bet and Eomes are significantly downregulated in COVID-19 patient non-naïve CD8+ T cells compared to healthy controls. This counter-intuitive finding may indicate that canonical effector CD8+ T cells are less prevalent in COVID-19 patients than healthy controls. This method is applicable to any cytometry dataset for discovering novel insights through topological data analysis which may be difficult to ascertain otherwise with a standard gating strategy or existing bioinformatic tools.Community Resources