🍩 Database of Original & Non-Theoretical Uses of Topology
(found 15 matches in 0.007194s)
-
-
A Study on Topological Descriptors for the Analysis of 3D Surface Texture (2018)
Matthias Zeppelzauer, Bartosz Zieliński, Mateusz Juda, Markus Seidl -
Topological Data Analysis of Task-Based fMRI Data From Experiments on Schizophrenia (2021)
Bernadette J. Stolz, Tegan Emerson, Satu Nahkuri, Mason A. Porter, Heather A. Harrington -
Persistent Homology for Breast Tumor Classification Using Mammogram Scans (2022)
Aras Asaad, Dashti Ali, Taban Majeed, Rasber RashidAbstract
An Important tool in the field topological data analysis is known as persistent Homology (PH) which is used to encode abstract representation of the homology of data at different resolutions in the form of persistence diagram (PD). In this work we build more than one PD representation of a single image based on a landmark selection method, known as local binary patterns, that encode different types of local textures from images. We employed different PD vectorizations using persistence landscapes, persistence images, persistence binning (Betti Curve) and statistics. We tested the effectiveness of proposed landmark based PH on two publicly available breast abnormality detection datasets using mammogram scans. Sensitivity of landmark based PH obtained is over 90% in both datasets for the detection of abnormal breast scans. Finally, experimental results give new insights on using different types of PD vectorizations which help in utilising PH in conjunction with machine learning classifiers. -
Topological Data Analysis Distinguishes Parameter Regimes in the Anderson-Chaplain Model of Angiogenesis (2021)
John T. Nardini, Bernadette J. Stolz, Kevin B. Flores, Heather A. Harrington, Helen M. ByrneAbstract
Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology. -
A Topological Machine Learning Pipeline for Classification (2022)
Francesco Conti, Davide Moroni, Maria Antonietta PascaliAbstract
In this work, we develop a pipeline that associates Persistence Diagrams to digital data via the most appropriate filtration for the type of data considered. Using a grid search approach, this pipeline determines optimal representation methods and parameters. The development of such a topological pipeline for Machine Learning involves two crucial steps that strongly affect its performance: firstly, digital data must be represented as an algebraic object with a proper associated filtration in order to compute its topological summary, the Persistence Diagram. Secondly, the persistence diagram must be transformed with suitable representation methods in order to be introduced in a Machine Learning algorithm. We assess the performance of our pipeline, and in parallel, we compare the different representation methods on popular benchmark datasets. This work is a first step toward both an easy and ready-to-use pipeline for data classification using persistent homology and Machine Learning, and to understand the theoretical reasons why, given a dataset and a task to be performed, a pair (filtration, topological representation) is better than another. -
Transfer Learning for Autonomous Chatter Detection in Machining (2022)
Melih C. Yesilli, Firas A. Khasawneh, Brian P. MannAbstract
Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter detection using machine learning has been an active research area over the last decade. Three challenges can be identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of the universality of chatter features across different processes, the need for automating feature extraction, and the existence of limited data for each specific workpiece-machine tool combination, e.g., when machining one-off products. These three challenges can be grouped under the umbrella of transfer learning, which is concerned with studying how knowledge gained from one setting can be leveraged to obtain information in new settings. This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted from turning and milling experiments with different cutting configurations. The studied methods include Fast Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), and decomposition based tools such as Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). We also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time series based on Discrete Time Warping (DTW). We evaluate transfer learning potential of each approach by training and testing both within and across the turning and milling data sets. Four supervised classification algorithms are explored: support vector machine (SVM), logistic regression, random forest classification, and gradient boosting. In addition to accuracy, we also comment on the automation potential of feature extraction for each approach which is integral to creating autonomous manufacturing centers. Our results show that carefully chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches can provide accuracies and F1-scores on par with the time-frequency methods without the need for manual preprocessing via completely automatic pipelines. Further, we discovered that the DTW approach outperforms all other methods when trained using the milling data and tested on the turning data. Therefore, TDA and DTW approaches may be preferred over the time-frequency-based approaches for fully automated chatter detection schemes. DTW and TDA also can be more advantageous when pooling data from either limited workpiece-machine tool combinations, or from small data sets of one-off processes. -
Topological Descriptors Help Predict Guest Adsorption in Nanoporous Materials (2020)
Aditi S. Krishnapriyan, Maciej Haranczyk, Dmitriy MorozovAbstract
Machine learning has emerged as an attractive alternative to experiments and simulations for predicting material properties. Usually, such an approach relies on specific domain knowledge for feature design: each learning target requires careful selection of features that an expert recognizes as important for the specific task. The major drawback of this approach is that computation of only a few structural features has been implemented so far, and it is difficult to tell a priori which features are important for a particular application. The latter problem has been empirically observed for predictors of guest uptake in nanoporous materials: local and global porosity features become dominant descriptors at low and high pressures, respectively. We investigate a feature representation of materials using tools from topological data analysis. Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales. We combine our topological descriptor with traditional structural features and investigate the relative importance of each to the prediction tasks. We demonstrate an application of this feature representation by predicting methane adsorption in zeolites, for pressures in the range of 1-200 bar. Our results not only show a considerable improvement compared to the baseline, but they also highlight that topological features capture information complementary to the structural features: this is especially important for the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by investigation of the importance of individual topological features in the adsorption model, we are able to pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to our atom-level understanding of structure-property relationships. -
A Novel Approach for Wafer Defect Pattern Classification Based on Topological Data Analysis (2023)
Seungchan Ko, Dowan KooAbstract
In semiconductor manufacturing, wafer map defect pattern provides critical information for facility maintenance and yield management, so the classification of defect patterns is one of the most important tasks in the manufacturing process. In this paper, we propose a novel way to represent the shape of the defect pattern as a finite-dimensional vector, which will be used as an input for a neural network algorithm for classification. The main idea is to extract the topological features of each pattern by using the theory of persistent homology from topological data analysis (TDA). Through some experiments with a simulated dataset, we show that the proposed method is faster and much more efficient in training with higher accuracy, compared with the method using convolutional neural networks (CNN) which is the most common approach for wafer map defect pattern classification. Moreover, it was shown that our method outperforms the CNN-based method when the number of training data is not enough and is imbalanced. -
From Trees to Barcodes and Back Again: Theoretical and Statistical Perspectives (2020)
Lida Kanari, Adélie Garin, Kathryn HessAbstract
Methods of topological data analysis have been successfully applied in a wide range of fields to provide useful summaries of the structure of complex data sets in terms of topological descriptors, such as persistence diagrams. While there are many powerful techniques for computing topological descriptors, the inverse problem, i.e., recovering the input data from topological descriptors, has proved to be challenging. In this article we study in detail the Topological Morphology Descriptor (TMD), which assigns a persistence diagram to any tree embedded in Euclidean space, and a sort of stochastic inverse to the TMD, the Topological Neuron Synthesis (TNS) algorithm, gaining both theoretical and computational insights into the relation between the two. We propose a new approach to classify barcodes using symmetric groups, which provides a concrete language to formulate our results. We investigate to what extent the TNS recovers a geometric tree from its TMD and describe the effect of different types of noise on the process of tree generation from persistence diagrams. We prove moreover that the TNS algorithm is stable with respect to specific types of noise. -
Topological Data Analysis of Spatial Patterning in Heterogeneous Cell Populations: Clustering and Sorting With Varying Cell-Cell Adhesion (2023)
Dhananjay Bhaskar, William Y. Zhang, Alexandria Volkening, Björn Sandstede, Ian Y. WongAbstract
Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains challenging, particularly given their structural diversity and biological variability. Recent developments based on topological data analysis are intriguing to reveal similarities in tissue architecture, but these methods remain computationally expensive. In this article, we show that multicellular patterns organized from two interacting cell types can be efficiently represented through persistence images. Our optimized combination of dimensionality reduction via autoencoders, combined with hierarchical clustering, achieved high classification accuracy for simulations with constant cell numbers. We further demonstrate that persistence images can be normalized to improve classification for simulations with varying cell numbers due to proliferation. Finally, we systematically consider the importance of incorporating different topological features as well as information about each cell type to improve classification accuracy. We envision that topological machine learning based on persistence images will enable versatile and robust classification of complex tissue architectures that occur in development and disease. -
Barcodes Distinguish Morphology of Neuronal Tauopathy (2022)
David Beers, Despoina Goniotaki, Diane P. Hanger, Alain Goriely, Heather A. HarringtonAbstract
The geometry of neurons is known to be important for their functions. Hence, neurons are often classified by their morphology. Two recent methods, persistent homology and the topological morphology descriptor, assign a morphology descriptor called a barcode to a neuron equipped with a given function, such as the Euclidean distance from the root of the neuron. These barcodes can be converted into matrices called persistence images, which can then be averaged across groups. We show that when the defining function is the path length from the root, both the topological morphology descriptor and persistent homology are equivalent. We further show that persistence images arising from the path length procedure provide an interpretable summary of neuronal morphology. We introduce \topological morphology functions\, a class of functions similar to Sholl functions, that can be recovered from the associated topological morphology descriptor. To demonstrate this topological approach, we compare healthy cortical and hippocampal mouse neurons to those affected by progressive tauopathy. We find a significant difference in the morphology of healthy neurons and those with a tauopathy at a postsymptomatic age. We use persistence images to conclude that the diseased group tends to have neurons with shorter branches as well as fewer branches far from the soma. -
Optimizing Porosity Detection in Wire Laser Metal Deposition Processes Through Data-Driven AI Classification Techniques (2023)
Meritxell Gomez-Omella, Jon Flores, Basilio Sierra, Susana Ferreiro, Nicolas Hascoët, Francisco ChinestaAbstract
Additive manufacturing (AM) is an attractive solution for many companies that produce geometrically complex parts. This process consists of depositing material layer by layer following a sliced CAD geometry. It brings several benefits to manufacturing capabilities, such as design freedom, reduced material waste, and short-run customization. However, one of the current challenges faced by users of the process, mainly in wire laser metal deposition (wLMD), is to avoid defects in the manufactured part, especially the porosity. This defect is caused by extreme conditions and metallurgical transformations of the process. And not only does it directly affect the mechanical performance of the parts, especially the fatigue properties, but it also means an increase in costs due to the inspection tasks to which the manufactured parts must be subjected. This work compares three operational solution approaches, product-centric, based on signal-based feature extraction and Topological Data Analysis together with statistical and Machine Learning (ML) techniques, for the early detection and prediction of porosity failure in a wLMD process. The different forecasting and validation strategies demonstrate the variety of conclusions that can be drawn with different objectives in the analysis of the monitored data in AM problems. -
Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)
Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. YoonAbstract
Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable. -
The Shape of Cancer Relapse: Topological Data Analysis Predicts Recurrence in Paediatric Acute Lymphoblastic Leukaemia (2021)
Salvador Chulián, Bernadette J. Stolz, Álvaro Martínez-Rubio, Cristina Blázquez Goñi, Juan F. Rodríguez Gutiérrez, Teresa Caballero Velázquez, Águeda Molinos Quintana, Manuel Ramírez Orellana, Ana Castillo Robleda, José Luis Fuster Soler, Alfredo Minguela Puras, María Victoria Martínez Sánchez, María Rosa, Víctor M. Pérez-García, Helen ByrneAbstract
Acute Lymphoblastic Leukaemia (ALL) is the most frequent paediatric cancer. Modern therapies have improved survival rates, but approximately 15-20 % of patients relapse. At present, patients’ risk of relapse are assessed by projecting high-dimensional flow cytometry data onto a subset of biomarkers and manually estimating the shape of this reduced data. Here, we apply methods from topological data analysis (TDA), which quantify shape in data via features such as connected components and loops, to pre-treatment ALL datasets with known outcomes. We combine these fully unsupervised analyses with machine learning to identify features in the pre-treatment data that are prognostic for risk of relapse. We find significant topological differences between relapsing and non-relapsing patients and confirm the predictive power of CD10, CD20, CD38, and CD45. Further, we are able to use the TDA descriptors to predict patients who relapsed. We propose three prognostic pipelines that readily extend to other haematological malignancies. Teaser Topology reveals features in flow cytometry data which predict relapse of patients with acute lymphoblastic leukemia