🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.000825s)
  1. Topology in Cyber Research (2022)

    Steve Huntsman, Jimmy Palladino, Michael Robinson
    Abstract We give an idiosyncratic overview of applications of topology to cyber research, spanning the analysis of variables/assignments and control flow in computer programs, a brief sketch of topological data analysis in one dimension, and the use of sheaves to analyze wireless networks. The text is from a chapter in the forthcoming book Mathematics in Cyber Research, to be published by Taylor and Francis.
  2. Path Homology as a Stronger Analogue of Cyclomatic Complexity (2020)

    Steve Huntsman
    Abstract Cyclomatic complexity is an incompletely specified but mathematically principled software metric that can be usefully applied to both source and binary code. We consider the application of path homology as a stronger analogue of cyclomatic complexity. We have implemented an algorithm to compute path homology in arbitrary dimension and applied it to several classes of relevant flow graphs, including randomly generated flow graphs representing structured and unstructured control flow. We also compared path homology and cyclomatic complexity on a set of disassembled binaries obtained from the grep utility. There exist control flow graphs realizable at the assembly level with nontrivial path homology in arbitrary dimension. We exhibit several classes of examples in this vein while also experimentally demonstrating that path homology gives identicial results to cyclomatic complexity for at least one detailed notion of structured control flow. We also experimentally demonstrate that the two notions differ on disassembled binaries, and we highlight an example of extreme disagreement. Path homology empirically generalizes cyclomatic complexity for an elementary notion of structured code and appears to identify more structurally relevant features of control flow in general. Path homology therefore has the potential to substantially improve upon cyclomatic complexity.
  3. Path Homologies of Motifs and Temporal Network Representations (2022)

    Samir Chowdhury, Steve Huntsman, Matvey Yutin
    Abstract Path homology is a powerful method for attaching algebraic invariants to digraphs. While there have been growing theoretical developments on the algebro-topological framework surrounding path homology, bona fide applications to the study of complex networks have remained stagnant. We address this gap by presenting an algorithm for path homology that combines efficient pruning and indexing techniques and using it to topologically analyze a variety of real-world complex temporal networks. A crucial step in our analysis is the complete characterization of path homologies of certain families of small digraphs that appear as subgraphs in these complex networks. These families include all digraphs, directed acyclic graphs, and undirected graphs up to certain numbers of vertices, as well as some specially constructed cases. Using information from this analysis, we identify small digraphs contributing to path homology in dimension two for three temporal networks in an aggregated representation and relate these digraphs to network behavior. We then investigate alternative temporal network representations and identify complementary subgraphs as well as behavior that is preserved across representations. We conclude that path homology provides insight into temporal network structure, and in turn, emergent structures in temporal networks provide us with new subgraphs having interesting path homology.