🍩 Database of Original & Non-Theoretical Uses of Topology

(found 10 matches in 0.002099s)
  1. Simplicial Neural Networks (2020)

    Stefania Ebli, Michaël Defferrard, Gard Spreemann
    Abstract We present simplicial neural networks (SNNs), a generalization of graph neural networks to data that live on a class of topological spaces called simplicial complexes. These are natural multi-dimensional extensions of graphs that encode not only pairwise relationships but also higher-order interactions between vertices - allowing us to consider richer data, including vector fields and \$n\$-fold collaboration networks. We define an appropriate notion of convolution that we leverage to construct the desired convolutional neural networks. We test the SNNs on the task of imputing missing data on coauthorship complexes.
  2. PersGNN: Applying Topological Data Analysis and Geometric Deep Learning to Structure-Based Protein Function Prediction (2020)

    Nicolas Swenson, Aditi S. Krishnapriyan, Aydin Buluc, Dmitriy Morozov, Katherine Yelick
    Abstract Understanding protein structure-function relationships is a key challenge in computational biology, with applications across the biotechnology and pharmaceutical industries. While it is known that protein structure directly impacts protein function, many functional prediction tasks use only protein sequence. In this work, we isolate protein structure to make functional annotations for proteins in the Protein Data Bank in order to study the expressiveness of different structure-based prediction schemes. We present PersGNN - an end-to-end trainable deep learning model that combines graph representation learning with topological data analysis to capture a complex set of both local and global structural features. While variations of these techniques have been successfully applied to proteins before, we demonstrate that our hybridized approach, PersGNN, outperforms either method on its own as well as a baseline neural network that learns from the same information. PersGNN achieves a 9.3% boost in area under the precision recall curve (AUPR) compared to the best individual model, as well as high F1 scores across different gene ontology categories, indicating the transferability of this approach.
  3. Representability of Algebraic Topology for Biomolecules in Machine Learning Based Scoring and Virtual Screening (2018)

    Zixuan Cang, Lin Mu, Guo-Wei Wei
    Abstract This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the conventional persistent homology, multi-component persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for protein-ligand binding analysis and virtual screening of small molecules. Extensive numerical experiments involving 4,414 protein-ligand complexes from the PDBBind database and 128,374 ligand-target and decoy-target pairs in the DUD database are performed to test respectively the scoring power and the discriminatory power of the proposed topological learning strategies. It is demonstrated that the present topological learning outperforms other existing methods in protein-ligand binding affinity prediction and ligand-decoy discrimination.
  4. PI-Net: A Deep Learning Approach to Extract Topological Persistence Images (2020)

    Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew Buman, Pavan Turaga
    Abstract Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustness topological representations provide against different types of physical nuisance variables seen in real-world data, such as view-point, illumination, and more. However, key bottlenecks to their large scale adoption are computational expenditure and difficulty incorporating them in a differentiable architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a novel one-step approach to generate PIs directly from the input data. We design two separate convolutional neural network architectures, one designed to take in multi-variate time series signals as input and another that accepts multi-channel images as input. We call these networks Signal PI-Net and Image PINet respectively. To the best of our knowledge, we are the first to propose the use of deep learning for computing topological features directly from data. We explore the use of the proposed PI-Net architectures on two applications: human activity recognition using tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of PIs in supervised deep learning architectures and speed up of several orders of magnitude for extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.
  5. Spatial Embedding Imposes Constraints on Neuronal Network Architectures (2018)

    Jennifer Stiso, Danielle S. Bassett
    Abstract Recent progress towards understanding circuit function has capitalized on tools from network science to parsimoniously describe the spatiotemporal architecture of neural systems. Such tools often address systems topology divorced from its physical instantiation. Nevertheless, for embedded systems such as the brain, physical laws directly constrain the processes of network growth, development, and function. We review here the rules imposed by the space and volume of the brain on the development of neuronal networks, and show that these rules give rise to a specific set of complex topologies. These rules also affect the repertoire of neural dynamics that can emerge from the system, and thereby inform our understanding of network dysfunction in disease. We close by discussing new tools and models to delineate the effects of spatial embedding.
  6. Geometry and Topology of the Space of Sonar Target Echos (2018)

    Michael Robinson, Sean Fennell, Brian DiZio, Jennifer Dumiak
    Abstract Successful synthetic aperture sonar target classification depends on the “shape” of the scatterers within a target signature. This article presents a workflow that computes a target-to-target distance from persistence diagrams, since the “shape” of a signature informs its persistence diagram in a structure-preserving way. The target-to-target distances derived from persistence diagrams compare favorably against those derived from spectral features and have the advantage of being substantially more compact. While spectral features produce clusters associated to each target type that are reasonably dense and well formed, the clusters are not well-separated from one another. In rather dramatic contrast, a distance derived from persistence diagrams results in highly separated clusters at the expense of some misclassification of outliers.
  7. Topological Detection of Trojaned Neural Networks (2021)

    Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank Goswami, Chao Chen
    Abstract Deep neural networks are known to have security issues. One particular threat is the Trojan attack. It occurs when the attackers stealthily manipulate the model’s behavior through Trojaned training samples, which can later be exploited. Guided by basic neuroscientific principles, we discover subtle – yet critical – structural deviation characterizing Trojaned models. In our analysis we use topological tools. They allow us to model high-order dependencies in the networks, robustly compare different networks, and localize structural abnormalities. One interesting observation is that Trojaned models develop short-cuts from shallow to deep layers. Inspired by these observations, we devise a strategy for robust detection of Trojaned models. Compared to standard baselines it displays better performance on multiple benchmarks.
  8. Geometric Feature Performance Under Downsampling for EEG Classification Tasks (2021)

    Bryan Bischof, Eric Bunch
    Abstract We experimentally investigate a collection of feature engineering pipelines for use with a CNN for classifying eyes-open or eyes-closed from electroencephalogram (EEG) time-series from the Bonn dataset. Using the Takens' embedding--a geometric representation of time-series--we construct simplicial complexes from EEG data. We then compare \$\epsilon\$-series of Betti-numbers and \$\epsilon\$-series of graph spectra (a novel construction)--two topological invariants of the latent geometry from these complexes--to raw time series of the EEG to fill in a gap in the literature for benchmarking. These methods, inspired by Topological Data Analysis, are used for feature engineering to capture local geometry of the time-series. Additionally, we test these feature pipelines' robustness to downsampling and data reduction. This paper seeks to establish clearer expectations for both time-series classification via geometric features, and how CNNs for time-series respond to data of degraded resolution.
  9. The Extended Persistent Homology Transform of Manifolds With Boundary (2022)

    Katharine Turner, Vanessa Robins, James Morgan
    Abstract The Extended Persistent Homology Transform (XPHT) is a topological transform which takes as input a shape embedded in Euclidean space, and to each unit vector assigns the extended persistence module of the height function over that shape with respect to that direction. We can define a distance between two shapes by integrating over the sphere the distance between their respective extended persistence modules. By using extended persistence we get finite distances between shapes even when they have different Betti numbers. We use Morse theory to show that the extended persistence of a height function over a manifold with boundary can be deduced from the extended persistence for that height function restricted to the boundary, alongside labels on the critical points as positive or negative critical. We study the application of the XPHT to binary images; outlining an algorithm for efficient calculation of the XPHT exploiting relationships between the PHT of the boundary curves to the extended persistence of the foreground.
  10. Inferring COVID-19 Biological Pathways From Clinical Phenotypes via Topological Analysis (2021)

    Negin Karisani, Daniel E. Platt, Saugata Basu, Laxmi Parida
    Abstract COVID-19 has caused thousands of deaths around the world and also resulted in a large international economic disruption. Identifying the pathways associated with this illness can help medical researchers to better understand the properties of the condition. This process can be carried out by analyzing the medical records. It is crucial to develop tools and models that can aid researchers with this process in a timely manner. However, medical records are often unstructured clinical notes, and this poses significant challenges to developing the automated systems. In this article, we propose a pipeline to aid practitioners in analyzing clinical notes and revealing the pathways associated with this disease. Our pipeline relies on topological properties and consists of three steps: 1) pre-processing the clinical notes to extract the salient concepts, 2) constructing a feature space of the patients to characterize the extracted concepts, and finally, 3) leveraging the topological properties to distill the available knowledge and visualize the result. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways.