🍩 Database of Original & Non-Theoretical Uses of Topology
(found 5 matches in 0.001164s)
-
-
The Shape of Cancer Relapse: Topological Data Analysis Predicts Recurrence in Paediatric Acute Lymphoblastic Leukaemia (2021)
Salvador Chulián, Bernadette J. Stolz, Álvaro Martínez-Rubio, Cristina Blázquez Goñi, Juan F. Rodríguez Gutiérrez, Teresa Caballero Velázquez, Águeda Molinos Quintana, Manuel Ramírez Orellana, Ana Castillo Robleda, José Luis Fuster Soler, Alfredo Minguela Puras, María Victoria Martínez Sánchez, María Rosa, Víctor M. Pérez-García, Helen ByrneAbstract
Acute Lymphoblastic Leukaemia (ALL) is the most frequent paediatric cancer. Modern therapies have improved survival rates, but approximately 15-20 % of patients relapse. At present, patients’ risk of relapse are assessed by projecting high-dimensional flow cytometry data onto a subset of biomarkers and manually estimating the shape of this reduced data. Here, we apply methods from topological data analysis (TDA), which quantify shape in data via features such as connected components and loops, to pre-treatment ALL datasets with known outcomes. We combine these fully unsupervised analyses with machine learning to identify features in the pre-treatment data that are prognostic for risk of relapse. We find significant topological differences between relapsing and non-relapsing patients and confirm the predictive power of CD10, CD20, CD38, and CD45. Further, we are able to use the TDA descriptors to predict patients who relapsed. We propose three prognostic pipelines that readily extend to other haematological malignancies. Teaser Topology reveals features in flow cytometry data which predict relapse of patients with acute lymphoblastic leukemia -
Histopathological Cancer Detection With Topological Signatures (2023)
Ankur Yadav, Faisal Ahmed, Ovidiu Daescu, Reyhan Gedik, Baris CoskunuzerAbstract
We present a transformative approach to histopathological cancer detection and grading by introducing a very powerful feature extraction method based on the latest topological data analysis tools. By analyzing the evolution of topological patterns in different color channels, we discovered that every tumor class leaves its own topological footprint in histopathological images, allowing to extract feature vectors that can be used to reliably identify tumor classes.Our topological signatures, even when combined with traditional machine learning methods, provide very fast and highly accurate results in various settings. While most DL models work well for one type of cancer, our model easily adapts to different scenarios, and consistently gives highly competitive results with the state-of-the-art models on benchmark datasets across multiple cancer types including bone, colon, breast, cervical (cytopathology), and prostate cancer. Unlike most DL models, our proposed Topo-ML model does not need any data augmentation or pre-processing steps and works perfectly on small datasets. The model is computationally very efficient, with end-to-end processing taking only a few hours for datasets consisting of thousands of images. -
Acute Lymphoblastic Leukemia Classification Using Persistent Homology (2024)
Waqar Hussain Shah, Abdullah Baloch, Rider Jaimes-Reátegui, Sohail Iqbal, Syeda Rafia Fatima, Alexander N. PisarchikAbstract
Acute Lymphoblastic Leukemia (ALL) is a prevalent form of childhood blood cancer characterized by the proliferation of immature white blood cells that rapidly replace normal cells in the bone marrow. The exponential growth of these leukemic cells can be fatal if not treated promptly. Classifying lymphoblasts and healthy cells poses a significant challenge, even for domain experts, due to their morphological similarities. Automated computer analysis of ALL can provide substantial support in this domain and potentially save numerous lives. In this paper, we propose a novel classification approach that involves analyzing shapes and extracting topological features of ALL cells. We employ persistent homology to capture these topological features. Our technique accurately and efficiently detects and classifies leukemia blast cells, achieving a recall of 98.2% and an F1-score of 94.6%. This approach has the potential to significantly enhance leukemia diagnosis and therapy. -
CCF-GNN: A Unified Model Aggregating Appearance, Microenvironment, and Topology for Pathology Image Classification (2023)
Hongxiao Wang, Gang Huang, Zhuo Zhao, Liang Cheng, Anna Juncker-Jensen, Máté Levente Nagy, Xin Lu, Xiangliang Zhang, Danny Z. ChenAbstract
Pathology images contain rich information of cell appearance, microenvironment, and topology features for cancer analysis and diagnosis. Among such features, topology becomes increasingly important in analysis for cancer immunotherapy. By analyzing geometric and hierarchically structured cell distribution topology, oncologists can identify densely-packed and cancer-relevant cell communities (CCs) for making decisions. Compared to commonly-used pixel-level Convolution Neural Network (CNN) features and cell-instance-level Graph Neural Network (GNN) features, CC topology features are at a higher level of granularity and geometry. However, topological features have not been well exploited by recent deep learning (DL) methods for pathology image classification due to lack of effective topological descriptors for cell distribution and gathering patterns. In this paper, inspired by clinical practice, we analyze and classify pathology images by comprehensively learning cell appearance, microenvironment, and topology in a fine-to-coarse manner. To describe and exploit topology, we design Cell Community Forest (CCF), a novel graph that represents the hierarchical formulation process of big-sparse CCs from small-dense CCs. Using CCF as a new geometric topological descriptor of tumor cells in pathology images, we propose CCF-GNN, a GNN model that successively aggregates heterogeneous features (e.g., appearance, microenvironment) from cell-instance-level, cell-community-level, into image-level for pathology image classification. Extensive cross-validation experiments show that our method significantly outperforms alternative methods on H&E-stained; immunofluorescence images for disease grading tasks with multiple cancer types. Our proposed CCF-GNN establishes a new topological data analysis (TDA) based method, which facilitates integrating multi-level heterogeneous features of point clouds (e.g., for cells) into a unified DL framework.