🍩 Database of Original & Non-Theoretical Uses of Topology

(found 1 matches in 0.000879s)
  1. A Klein-Bottle-Based Dictionary for Texture Representation (2014)

    Jose A. Perea, Gunnar Carlsson
    Abstract A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small \$\$n\times n\$\$n×nhigh-contrast patches from natural images in gray-scale accumulate with high density around a surface \$\$\fancyscript\K\\subset \\mathbb \R\\\textasciicircum\n\textasciicircum2\\$\$K⊂Rn2with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008), we present in this paper a novel framework for the estimation and representation of distributions around \$\$\fancyscript\K\\$\$K, of patches from texture images. More specifically, we show that most \$\$n\times n\$\$n×npatches from a given image can be projected onto \$\$\fancyscript\K\\$\$Kyielding a finite sample \$\$S\subset \fancyscript\K\\$\$S⊂K, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from \$\$S\$\$S. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.