🍩 Database of Original & Non-Theoretical Uses of Topology
(found 5 matches in 0.001623s)
-
-
Modeling the Spread of the Zika Virus Using Topological Data Analysis (2018)
Derek Lo, Briton Park -
Construction of Personalized Health Curves in Disease Space for Human Malaria Infections (2015)
Else M. Bijker, Brenda Y. Torres, David S. Schneider, Robert W. Sauerwein -
Tracking Resilience to Infections by Mapping Disease Space (2016)
Brenda Y. Torres, Jose Henrique M. Oliveira, Ann Thomas Tate, Poonam Rath, Katherine Cumnock, David S. SchneiderAbstract
Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels. -
Topological Data Analysis of Escherichia Coli O157:H7 and Non-O157 Survival in Soils (2014)
Abasiofiok M. Ibekwe, Jincai Ma, David E. Crowley, Ching-Hong Yang, Alexis M. Johnson, Tanya C. Petrossian, Pek Y. LumAbstract
Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 strain 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.