🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.002167s)
  1. Testing Topological Data Analysis for Condition Monitoring of Wind Turbines (2024)

    Simone Casolo, Alexander Stasik, Zhenyou Zhang, Signe Riemer-Sørensen
    Abstract We present an investigation of how topological data analysis (TDA) can be applied to condition-based monitoring (CBM) of wind turbines for energy generation.TDA is a branch of data analysis focusing on extracting mean- ingful information from complex datasets by analyzing their structure in state space and computing their underlying topo- logical features. By representing data in a high-dimensional state space, TDA enables the identification of patterns, anoma- lies, and trends in the data that may not be apparent through traditional signal processing methods. For this study, wind turbine data was acquired from a wind park in Norway via standard vibration sensors at different lo- cations of the turbine’s gearbox. Both the vibration acceler- ation data and its frequency spectra were recorded at infre- quent intervals for a few seconds at high frequency and fail- ure events were labelled as either gear-tooth or ball-bearing failures. The data processing and analysis are based on a pipeline where the time series data is first split into intervals and then transformed into multi-dimensional point clouds via a time-delay embedding. The shape of the point cloud is an- alyzed with topological methods such as persistent homol- ogy to generate topology-based key health indicators based on Betti numbers, information entropy and signal persistence. Such indicators are tested for CBM and diagnosis (fault de- tection) to identify faults in wind turbines and classify them accordingly. Topological indicators are shown to be an in- teresting alternative for failure identification and diagnosis of operational failures in wind turbines.
  2. A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data (2021)

    Xiaoyu Zhang, Takanori Fujiwara, Senthil Chandrasegaran, Michael P. Brundage, Thurston Sexton, Alden Dima, Kwan-Liu Ma
    Abstract Analysis of large, high-dimensional, and heterogeneous datasets is challenging as no one technique is suitable for visualizing and clustering such data in order to make sense of the underlying information. For instance, heterogeneous logs detailing machine repair and maintenance in an organization often need to be analyzed to diagnose errors and identify abnormal patterns, formalize root-cause analyses, and plan preventive maintenance. Such real-world datasets are also beset by issues such as inconsistent and/or missing entries. To conduct an effective diagnosis, it is important to extract and understand patterns from the data with support from analytic algorithms (e.g., finding that certain kinds of machine complaints occur more in the summer) while involving the human-in-the-loop. To address these challenges, we adopt existing techniques for dimensionality reduction (DR) and clustering of numerical, categorical, and text data dimensions, and introduce a visual analytics approach that uses multiple coordinated views to connect DR + clustering results across each kind of the data dimension stated. To help analysts label the clusters, each clustering view is supplemented with techniques and visualizations that contrast a cluster of interest with the rest of the dataset. Our approach assists analysts to make sense of machine maintenance logs and their errors. Then the gained insights help them carry out preventive maintenance. We illustrate and evaluate our approach through use cases and expert studies respectively, and discuss generalization of the approach to other heterogeneous data.