🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001117s)
  1. Complexes of Tournaments, Directionality Filtrations and Persistent Homology (2020)

    Dejan Govc, Ran Levi, Jason P. Smith
    Abstract Complete digraphs are referred to in the combinatorics literature as tournaments. We consider a family of semi-simplicial complexes, that we refer to as "tournaplexes", whose simplices are tournaments. In particular, given a digraph \$\mathcal\G\\$, we associate with it a "flag tournaplex" which is a tournaplex containing the directed flag complex of \$\mathcal\G\\$, but also the geometric realisation of cliques that are not directed. We define several types of filtrations on tournaplexes, and exploiting persistent homology, we observe that flag tournaplexes provide finer means of distinguishing graph dynamics than the directed flag complex. We then demonstrate the power of these ideas by applying them to graph data arising from the Blue Brain Project's digital reconstruction of a rat's neocortex.
  2. Stable Signatures for Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence (2018)

    Woojin Kim, Facundo Memoli
    Abstract When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify. More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs. Since DGs can be given rise by applying the Rips functor (with a fixed threshold) to dynamic metric spaces, we are also able to derive related stable invariants for these richer class of dynamic objects. Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.