🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001254s)
  1. Topological Persistence for Relating Microstructure and Capillary Fluid Trapping in Sandstones (2019)

    A. L. Herring, V. Robins, A. P. Sheppard
    Abstract Results from a series of two-phase fluid flow experiments in Leopard, Berea, and Bentheimer sandstones are presented. Fluid configurations are characterized using laboratory-based and synchrotron based 3-D X-ray computed tomography. All flow experiments are conducted under capillary-dominated conditions. We conduct geometry-topology analysis via persistent homology and compare this to standard topological and watershed-partition-based pore-network statistics. Metrics identified as predictors of nonwetting fluid trapping are calculated from the different analytical methods and are compared to levels of trapping measured during drainage-imbibition cycles in the experiments. Metrics calculated from pore networks (i.e., pore body-throat aspect ratio and coordination number) and topological analysis (Euler characteristic) do not correlate well with trapping in these samples. In contrast, a new metric derived from the persistent homology analysis, which incorporates counts of topological features as well as their length scale and spatial distribution, correlates very well (R2 = 0.97) to trapping for all systems. This correlation encompasses a wide range of porous media and initial fluid configurations, and also applies to data sets of different imaging and image processing protocols.
  2. Pore Geometry Characterization by Persistent Homology Theory (2018)

    Fei Jiang, Takeshi Tsuji, Tomoyuki Shirai
    Abstract Rock pore geometry has heterogeneous characteristics and is scale dependent. This feature in a geological formation differs significantly from artificial materials and makes it difficult to predict hydrologic and elastic properties. To characterize pore heterogeneity, we propose an evaluation method that exploits the recently developed persistent homology theory. In the proposed method, complex pore geometry is first represented as sphere cloud data using a pore-network extraction method. Then, a persistence diagram (PD) is calculated from the point cloud, which represents the spatial distribution of pore bodies. A new parameter (distance index H) derived from the PD is proposed to characterize the degree of rock heterogeneity. Low H value indicates high heterogeneity. A new empirical equation using this index H is proposed to predict the effective elastic modulus of porous media. The results indicate that the proposed PD analysis is very efficient for extracting topological feature of pore geometry.