🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001289s)
  1. Topology in Cyber Research (2022)

    Steve Huntsman, Jimmy Palladino, Michael Robinson
    Abstract We give an idiosyncratic overview of applications of topology to cyber research, spanning the analysis of variables/assignments and control flow in computer programs, a brief sketch of topological data analysis in one dimension, and the use of sheaves to analyze wireless networks. The text is from a chapter in the forthcoming book Mathematics in Cyber Research, to be published by Taylor and Francis.
  2. Topological Differential Testing (2020)

    Kristopher Ambrose, Steve Huntsman, Michael Robinson, Matvey Yutin
    Abstract We introduce topological differential testing (TDT), an approach to extracting the consensus behavior of a set of programs on a corpus of inputs. TDT uses the topological notion of a simplicial complex (and implicitly draws on richer topological notions such as sheaves and persistence) to determine inputs that cause inconsistent behavior and in turn reveal \emph\de facto\ input specifications. We gently introduce TDT with a toy example before detailing its application to understanding the PDF file format from the behavior of various parsers. Finally, we discuss theoretical details and other possible applications.
  3. Relational Persistent Homology for Multispecies Data With Application to the Tumor Microenvironment (2023)

    Bernadette J. Stolz, Jagdeep Dhesi, Joshua A. Bull, Heather A. Harrington, Helen M. Byrne, Iris H. R. Yoon
    Abstract Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable.