🍩 Database of Original & Non-Theoretical Uses of Topology

(found 5 matches in 0.0016s)
  1. Persistent Homology of the Cosmic Web. I: Hierarchical Topology in \$\Lambda\$CDM Cosmologies (2021)

    Georg Wilding, Keimpe Nevenzeel, Rien van de Weygaert, Gert Vegter, Pratyush Pranav, Bernard J. T. Jones, Konstantinos Efstathiou, Job Feldbrugge
    Abstract Using a set of \$\Lambda\$CDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.
  2. Finding Universal Structures in Quantum Many-Body Dynamics via Persistent Homology (2020)

    Daniel Spitz, Jürgen Berges, Markus K. Oberthaler, Anna Wienhard
    Abstract Inspired by topological data analysis techniques, we introduce persistent homology observables and apply them in a geometric analysis of the dynamics of quantum field theories. As a prototype application, we consider simulated data of a two-dimensional Bose gas far from equilibrium. We discover a continuous spectrum of dynamical scaling exponents, which provides a refined classification of nonequilibrium universal phenomena. A possible explanation of the underlying processes is provided in terms of mixing wave turbulence and vortex kinetics components in point clouds. We find that the persistent homology scaling exponents are inherently linked to the geometry of the system, as the derivation of a packing relation reveals. The approach opens new ways of analyzing quantum many-body dynamics in terms of robust topological structures beyond standard field theoretic techniques.
  3. Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments (2016)

    Nithin Shivshankar, Pratyush Pranav, Vijay Natarajan, Rien van de Weygaert, E. G. Patrick Bos, Steven Rieder
    Abstract The large-scale structure of the universe is comprised of virialized blob-like clusters, linear filaments, sheet-like walls and huge near empty three-dimensional voids. Characterizing the large scale universe is essential to our understanding of the formation and evolution of galaxies. The density range of clusters, walls and voids are relatively well separated, when compared to filaments, which span a relatively larger range. The large scale filamentary network thus forms an intricate part of the cosmic web. In this paper, we describe Felix, a topology based framework for visual exploration of filaments in the cosmic web. The filamentary structure is represented by the ascending manifold geometry of the 2-saddles in the Morse-Smale complex of the density field. We generate a hierarchy of Morse-Smale complexes and query for filaments based on the density ranges at the end points of the filaments. The query is processed efficiently over the entire hierarchical Morse-Smale complex, allowing for interactive visualization. We apply Felix to computer simulations based on the heuristic Voronoi kinematic model and the standard \$\Lambda\$CDM cosmology, and demonstrate its usefulness through two case studies. First, we extract cosmic filaments within and across cluster like regions in Voronoi kinematic simulation datasets. We demonstrate that we produce similar results to existing structure finders. Filaments that form the spine of the cosmic web, which exist in high density regions in the current epoch, are isolated using Felix. Also, filaments present in void-like regions are isolated and visualized. These filamentary structures are often over shadowed by higher density range filaments and are not easily characterizable and extractable using other filament extraction methodologies.
  4. Cosmic Web Reconstruction Through Density Ridges: Method and Algorithm (2015)

    Yen-Chi Chen, Shirley Ho, Peter E. Freeman, Christopher R. Genovese, Larry Wasserman
    Abstract The detection and characterization of filamentary structures in the cosmic web allows cosmologists to constrain parameters that dictate the evolution of the Universe. While many filament estimators have been proposed, they generally lack estimates of uncertainty, reducing their inferential power. In this paper, we demonstrate how one may apply the subspace constrained mean shift (SCMS) algorithm (Ozertem & Erdogmus 2011; Genovese et al. 2014) to uncover filamentary structure in galaxydata. The SCMS algorithm is a gradient ascent method that models filaments as density ridges, one-dimensional smooth curves that trace high-density regions within the point cloud. We also demonstrate how augmenting the SCMS algorithm with bootstrap-based methods of uncertainty estimation allows one to place uncertainty bands around putative filaments. We apply the SCMS first to the data set generated from the Voronoi model. The density ridges show strong agreement with the filaments from Voronoi method. We then apply the SCMS method data sets sampled from a P3M N-body simulation, with galaxy number densities consistent with SDSS and WFIRST-AFTA, and to LOWZ and CMASS data from the Baryon Oscillation Spectroscopic Survey (BOSS). To further assess the efficacy of SCMS, we compare the relative locations of BOSS filaments with galaxy clusters in the redMaPPer catalogue, and find that redMaPPer clusters are significantly closer (with p-values \textless10−9) to SCMS-detected filaments than to randomly selected galaxies.