🍩 Database of Original & Non-Theoretical Uses of Topology
(found 3 matches in 0.001278s)
-
-
Capturing Shape Information With Multi-Scale Topological Loss Terms For 3D Reconstruction (2022)
Dominik J. E. Waibel, Scott Atwell, Matthias Meier, Carsten Marr, Bastian RieckAbstract
Reconstructing 3D objects from 2D images is both challenging for our brains and machine learning algorithms. To support this spatial reasoning task, contextual information about the overall shape of an object is critical. However, such information is not captured by established loss terms (e.g. Dice loss). We propose to complement geometrical shape information by including multi-scale topological features, such as connected components, cycles, and voids, in the reconstruction loss. Our method uses cubical complexes to calculate topological features of 3D volume data and employs an optimal transport distance to guide the reconstruction process. This topology-aware loss is fully differentiable, computationally efficient, and can be added to any neural network. We demonstrate the utility of our loss by incorporating it into SHAPR, a model for predicting the 3D cell shape of individual cells based on 2D microscopy images. Using a hybrid loss that leverages both geometrical and topological information of single objects to assess their shape, we find that topological information substantially improves the quality of reconstructions, thus highlighting its ability to extract more relevant features from image datasets. -
A Topological Framework for Identifying Phenomenological Bifurcations in Stochastic Dynamical Systems (2024)
Sunia Tanweer, Firas A. Khasawneh, Elizabeth Munch, Joshua R. TempelmanAbstract
Changes in the parameters of dynamical systems can cause the state of the system to shift between different qualitative regimes. These shifts, known as bifurcations, are critical to study as they can indicate when the system is about to undergo harmful changes in its behavior. In stochastic dynamical systems, there is particular interest in P-type (phenomenological) bifurcations, which can include transitions from a monostable state to multi-stable states, the appearance of stochastic limit cycles and other features in the probability density function (PDF) of the system’s state. Current practices are limited to systems with small state spaces, cannot detect all possible behaviors of the PDFs and mandate human intervention for visually identifying the change in the PDF. In contrast, this study presents a new approach based on Topological Data Analysis that uses superlevel persistence to mathematically quantify P-type bifurcations in stochastic systems through a “homological bifurcation plot”—which shows the changing ranks of 0th and 1st homology groups, through Betti vectors. Using these plots, we demonstrate the successful detection of P-bifurcations on the stochastic Duffing, Raleigh-Vander Pol and Quintic Oscillators given their analytical PDFs, and elaborate on how to generate an estimated homological bifurcation plot given a kernel density estimate (KDE) of these systems by employing a tool for finding topological consistency between PDFs and KDEs.