🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.001486s)
  1. Evasion Paths in Mobile Sensor Networks (2015)

    Henry Adams, Gunnar Carlsson
    Abstract Suppose that ball-shaped sensors wander in a bounded domain. A sensor does not know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In ‘Coordinate-free coverage in sensor networks with controlled boundaries via homology', Vin de Silva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path.
  2. Coverage in Sensor Networks via Persistent Homology (2007)

    Vin de Silva, Robert Ghrist
    Abstract We introduce a topological approach to a problem of covering a region in Euclidean space by balls of fixed radius at unknown locations (this problem being motivated by sensor networks with minimal sensing capabilities). In particular, we give a homological criterion to rigorously guarantee that a collection of balls covers a bounded domain based on the homology of a certain simplicial pair. This pair of (Vietoris–Rips) complexes is derived from graphs representing a coarse form of distance estimation between nodes and a proximity sensor for the boundary of the domain. The methods we introduce come from persistent homology theory and are applicable to nonlocalized sensor networks with ad hoc wireless communications.
  3. Extracting Insights From the Shape of Complex Data Using Topology (2013)

    P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, G. Carlsson
    Abstract This paper applies topological methods to study complex high dimensional data sets by extracting shapes (patterns) and obtaining insights about them. Our method combines the best features of existing standard methodologies such as principal component and cluster analyses to provide a geometric representation of complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis of relationships between related data sets. We illustrate the use of our method by applying it to three very different kinds of data, namely gene expression from breast tumors, voting data from the United States House of Representatives and player performance data from the NBA, in each case finding stratifications of the data which are more refined than those produced by standard methods.
  4. Blind Swarms for Coverage in 2-D (2005)

    V. D. Silva, R. Ghrist, A. Muhammad
    Abstract We consider coverage problems in robot sensor networks with minimal sensing capabilities. In particular, we demonstrate that a “blind” swarm of robots with no localization and only a weak form of distance estimation can rigorously determine coverage in a bounded planar domain of unknown size and shape. The methods we introduce come from algebraic topology. I. COVERAGE PROBLEMS Many of the potential applications of robot swarms require information about coverage in a given domain. For example, using a swarm of robot sensors for surveillance and security applications carries with it the charge to maximize, or, preferably, guarantee coverage. Such applications include networks of security cameras, mine field sweeping via networked robots [18], and oceanographic sampling [4]. In these contexts, each robot has some coverage domain, and one wishes to know about the union of these coverage domains. Such problems are also crucial in applications not involving robots directly, e.g., communication networks. As a preliminary analysis, we consider the static “field” coverage problem, in which robots are assumed stationary and the goal is to verify blanket coverage of a given domain. There is a large literature on this subject; see, e.g., [7], [1], [16]. In addition, there are variants on these problems involving “barrier” coverage to separate regions. Dynamic or “sweeping” coverage [3] is a common and challenging task with applications ranging from security to vacuuming. Although a sensor network composed of robots will have dynamic capabilities, we restrict attention in this brief paper to the static case in order to lay the groundwork for future inquiry. There are two primary approaches to static coverage problems in the literature. The first uses computational geometry tools applied to exact node coordinates. This typically involves ‘ruler-and-compass’ style geometry [10] or Delaunay triangulations of the domain [16], [14], [20]. Such approaches are very rigid with regards to inputs: one must know exact node coordinates and one must know the geometry of the domain precisely to determine the Delaunay complex. To alleviate the former requirement, many authors have turned to probabilistic tools. For example, in [13], the author assumes a randomly and uniformly distributed collection of nodes in a domain with a fixed geometry and proves expected area coverage. Other approaches [15], [19] give percolationtype results about coverage and network integrity for randomly distributed nodes. The drawback of these methods is the need for strong assumptions about the exact shape of the domain, as well as the need for a uniform distribution of nodes. In the sensor networks community, there is a compelling interest (and corresponding burgeoning literature) in determining properties of a network in which the nodes do not possess coordinate data. One example of a coordinate-free approach is in [17], which gives a heuristic method for geographic routing without coordinate data: among the large literature arising from this paper, we note in particular the mathematical analysis of this approach in [11]. To our knowledge, noone has treated the coverage problem in a coordinate-free setting. In this note, we introduce a new set of tools for answering coverage problems in robotics and sensor networks with minimal assumptions about domain geometry and node localization. We provide a sufficiency criterion for coverage. We do not answer the problem of how the nodes should be placed in order to maximize coverage, nor the minimum number of such nodes necessary; neither do we address how to reallocate nodes to fill coverage holes.