🍩 Database of Original & Non-Theoretical Uses of Topology
(found 4 matches in 0.000978s)
-
-
Homological Scaffold via Minimal Homology Bases (2021)
Marco Guerra, Alessandro De Gregorio, Ulderico Fugacci, Giovanni Petri, Francesco VaccarinoAbstract
The homological scaffold leverages persistent homology to construct a topologically sound summary of a weighted network. However, its crucial dependency on the choice of representative cycles hinders the ability to trace back global features onto individual network components, unless one provides a principled way to make such a choice. In this paper, we apply recent advances in the computation of minimal homology bases to introduce a quasi-canonical version of the scaffold, called minimal, and employ it to analyze data both real and in silico. At the same time, we verify that, statistically, the standard scaffold is a good proxy of the minimal one for sufficiently complex networks. -
The Topology of Higher-Order Complexes Associated With Brain Hubs in Human Connectomes (2020)
Miroslav Andjelković, Bosiljka Tadić, Roderick MelnikAbstract
Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supporting integrated brain function. Here, we study the structure of simplicial complexes attached to eight global hubs in the female and male connectomes and identify the core networks among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and Thalamus-Proper in the left and right cerebral hemisphere) are the highest-ranking according to their topological dimension, defined as the number of simplexes of all orders in which the node participates. Furthermore, we analyse the weight-dependent heterogeneity of simplexes. We demonstrate changes in the structure of identified core networks and topological entropy when the threshold weight is gradually increased. These results highlight the role of higher-order interactions in human brain networks and provide additional evidence for (dis)similarity between the female and male connectomes. -
The Growing Topology of the C. Elegans Connectome (2020)
Alec Helm, Ann S. Blevins, Danielle S. BassettAbstract
Probing the developing neural circuitry in Caenorhabditis elegans has enhanced our understanding of nervous systems. The C. elegans connectome, like those of other species, is characterized by a rich club of densely connected neurons embedded within a small-world architecture. This organization of neuronal connections, captured by quantitative network statistics, provides insight into the system's capacity to perform integrative computations. Yet these network measures are limited in their ability to detect weakly connected motifs, such as topological cavities, that may support the systems capacity to perform segregated computations. We address this limitation by using persistent homology to track the evolution of topological cavities in the growing C. elegans connectome throughout neural development, and assess the degree to which the growing connectomes topology is resistant to biological noise. We show that the developing connectome topology is both relatively robust to changes in neuron birth times and not captured by similar growth models. Additionally, we quantify the consequence of a neurons specific birth time and ask if this metric tracks other biological properties of neurons. Our results suggest that the connectomes growing topology is a robust feature of the developing connectome that is distinct from other network properties, and that the growing topology is particularly sensitive to the exact birth times of a small set of predominantly motor neurons. By utilizing novel measurements that track biological features, we anticipate that our study will be helpful in the construction of more accurate models of neuronal development in C. elegans