🍩 Database of Original & NonTheoretical Uses of Topology
(found 3 matches in 0.001074s)


Topological Data Analysis: Concepts, Computation, and Applications in Chemical Engineering (2021)
Alexander D. Smith, Paweł Dłotko, Victor M. ZavalaAbstract
A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysis (TDA) is a field of mathematics that analyzes data from a fundamentally different perspective. TDA represents datasets as geometric objects and provides dimensionality reduction techniques that project such objects onto lowdimensional descriptors. The key properties of these descriptors (also known as topological features) are that they provide multiscale information and that they are stable under perturbations (e.g., noise, translation, and rotation). In this work, we review the key mathematical concepts and methods of TDA and present different applications in chemical engineering. 
The Euler Characteristic: A General Topological Descriptor for Complex Data (2021)
Alexander Smith, Victor ZavalaAbstract
Datasets are mathematical objects (e.g., point clouds, matrices, graphs, images, fields/functions) that have shape. This shape encodes important knowledge about the system under study. Topology is an area of mathematics that provides diverse tools to characterize the shape of data objects. In this work, we study a specific tool known as the Euler characteristic (EC). The EC is a general, lowdimensional, and interpretable descriptor of topological spaces defined by data objects. We revise the mathematical foundations of the EC and highlight its connections with statistics, linear algebra, field theory, and graph theory. We discuss advantages offered by the use of the EC in the characterization of complex datasets; to do so, we illustrate its use in different applications of interest in chemical engineering such as process monitoring, flow cytometry, and microscopy. We show that the EC provides a descriptor that effectively reduces complex datasets and that this reduction facilitates tasks such as visualization, regression, classification, and clustering.