🍩 Database of Original & Non-Theoretical Uses of Topology
(found 6 matches in 0.002862s)
-
-
Unsupervised Topological Learning Approach of Crystal Nucleation (2022)
Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël JakseAbstract
Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unravelled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometre length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to monatomic metals, it shows that both translational and orientational ordering always come into play simultaneously as a result of the strong bonding when homogeneous nucleation starts in regions with low five-fold symmetry. It also reveals the specificity of the nucleation pathways depending on the element considered, with features beyond the hypothesis of Classical Nucleation Theory. -
Unsupervised Topological Learning Approach of Crystal Nucleation in Pure Tantalum (2021)
Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël JakseAbstract
Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unraveled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometer length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low five-fold symmetry. -
Atom-Specific Persistent Homology and Its Application to Protein Flexibility Analysis (2020)
David Bramer, Guo-Wei WeiAbstract
Recently, persistent homology has had tremendous success in biomolecular data analysis. It works by examining the topological relationship or connectivity of a group of atoms in a molecule at a variety of scales, then rendering a family of topological representations of the molecule. However, persistent homology is rarely employed for the analysis of atomic properties, such as biomolecular flexibility analysis or B-factor prediction. This work introduces atom-specific persistent homology to provide a local atomic level representation of a molecule via a global topological tool. This is achieved through the construction of a pair of conjugated sets of atoms and corresponding conjugated simplicial complexes, as well as conjugated topological spaces. The difference between the topological invariants of the pair of conjugated sets is measured by Bottleneck and Wasserstein metrics and leads to an atom-specific topological representation of individual atomic properties in a molecule. Atom-specific topological features are integrated with various machine learning algorithms, including gradient boosting trees and convolutional neural network for protein thermal fluctuation analysis and B-factor prediction. Extensive numerical results indicate the proposed method provides a powerful topological tool for analyzing and predicting localized information in complex macromolecules. -
Microscopic Description of Yielding in Glass Based on Persistent Homology (2019)
Tatsuhiko Shirai, Takenobu NakamuraAbstract
Persistent homology (PH) was applied to probe the structural changes of glasses under shear. PH associates each local atomistic structure in an atomistic configuration to a geometric object, namely, a hole, and evaluates the robustness of these holes against noise. We found that the microscopic structures were qualitatively different before and after yielding. The structures before yielding contained robust holes, the number of which decreased after yielding. We also observed that the structures after yielding approached those of quickly quenched glass. This work demonstrates the crucial role of robust holes in yielding and provides an interpretation based on geometry. -
Hierarchical Structures of Amorphous Solids Characterized by Persistent Homology (2016)
Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, Yasumasa NishiuraAbstract
This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods.