🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.000875s)
  1. Topological Detection of Trojaned Neural Networks (2021)

    Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank Goswami, Chao Chen
    Abstract Deep neural networks are known to have security issues. One particular threat is the Trojan attack. It occurs when the attackers stealthily manipulate the model’s behavior through Trojaned training samples, which can later be exploited. Guided by basic neuroscientific principles, we discover subtle – yet critical – structural deviation characterizing Trojaned models. In our analysis we use topological tools. They allow us to model high-order dependencies in the networks, robustly compare different networks, and localize structural abnormalities. One interesting observation is that Trojaned models develop short-cuts from shallow to deep layers. Inspired by these observations, we devise a strategy for robust detection of Trojaned models. Compared to standard baselines it displays better performance on multiple benchmarks.
  2. The Extended Persistent Homology Transform of Manifolds With Boundary (2022)

    Katharine Turner, Vanessa Robins, James Morgan
    Abstract The Extended Persistent Homology Transform (XPHT) is a topological transform which takes as input a shape embedded in Euclidean space, and to each unit vector assigns the extended persistence module of the height function over that shape with respect to that direction. We can define a distance between two shapes by integrating over the sphere the distance between their respective extended persistence modules. By using extended persistence we get finite distances between shapes even when they have different Betti numbers. We use Morse theory to show that the extended persistence of a height function over a manifold with boundary can be deduced from the extended persistence for that height function restricted to the boundary, alongside labels on the critical points as positive or negative critical. We study the application of the XPHT to binary images; outlining an algorithm for efficient calculation of the XPHT exploiting relationships between the PHT of the boundary curves to the extended persistence of the foreground.