🍩 Database of Original & Non-Theoretical Uses of Topology

(found 5 matches in 0.001143s)
  1. Generalized Penalty for Circular Coordinate Representation (2020)

    Hengrui Luo, Alice Patania, Jisu Kim, Mikael Vejdemo-Johansson
    Abstract Topological Data Analysis (TDA) provides novel approaches that allow us to analyze the geometrical shapes and topological structures of a dataset. As one important application, TDA can be used for data visualization and dimension reduction. We follow the framework of circular coordinate representation, which allows us to perform dimension reduction and visualization for high-dimensional datasets on a torus using persistent cohomology. In this paper, we propose a method to adapt the circular coordinate framework to take into account sparsity in high-dimensional applications. We use a generalized penalty function instead of an \$L_\2\\$ penalty in the traditional circular coordinate algorithm. We provide simulation experiments and real data analysis to support our claim that circular coordinates with generalized penalty will accommodate the sparsity in high-dimensional datasets under different sampling schemes while preserving the topological structures.
  2. Extracting Insights From the Shape of Complex Data Using Topology (2013)

    P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, G. Carlsson
    Abstract This paper applies topological methods to study complex high dimensional data sets by extracting shapes (patterns) and obtaining insights about them. Our method combines the best features of existing standard methodologies such as principal component and cluster analyses to provide a geometric representation of complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis of relationships between related data sets. We illustrate the use of our method by applying it to three very different kinds of data, namely gene expression from breast tumors, voting data from the United States House of Representatives and player performance data from the NBA, in each case finding stratifications of the data which are more refined than those produced by standard methods.
  3. Persistent Homology of Geospatial Data: A Case Study With Voting (2021)

    Michelle Feng, Mason A. Porter
    Abstract A crucial step in the analysis of persistent homology is the transformation of data into an appropriate topological object (which, in our case, is a simplicial complex). Software packages for computing persistent homology typically construct Vietoris--Rips or other distance-based simplicial complexes on point clouds because they are relatively easy to compute. We investigate alternative methods of constructing simplicial complexes and the effects of making associated choices during simplicial-complex construction on the output of persistent-homology algorithms. We present two new methods for constructing simplicial complexes from two-dimensional geospatial data (such as maps). We apply these methods to a California precinct-level voting data set, and we thereby demonstrate that our new constructions can capture geometric characteristics that are missed by distance-based constructions. Our new constructions can thus yield more interpretable persistence modules and barcodes for geospatial data. In particular, they are able to distinguish short-persistence features that occur only for a narrow range of distance scales (e.g., voting patterns in densely populated cities) from short-persistence noise by incorporating information about other spatial relationships between regions.
  4. The (Homological) Persistence of Gerrymandering (2021)

    Moon Duchin, Tom Needham, Thomas Weighill
    Abstract \textlessp style='text-indent:20px;'\textgreaterWe apply persistent homology, the dominant tool from the field of topological data analysis, to study electoral redistricting. We begin by combining geographic and electoral data from a districting plan to produce a persistence diagram. Then, to see beyond a particular plan and understand the possibilities afforded by the choices made in redistricting, we build methods to visualize and analyze large ensembles of alternative plans. Our detailed case studies use zero-dimensional homology (persistent components) of filtered graphs constructed from voting data to analyze redistricting in Pennsylvania and North Carolina. We find that, across large ensembles of partitions, the features cluster in the persistence diagrams in a way that corresponds strongly to geographic location, so that we can construct an average diagram for an ensemble, with each point identified with a geographical region. Using this localization lets us produce zonings of each state at Congressional, state Senate, and state House scales, show the regional non-uniformity of election shifts, and identify attributes of partitions that tend to correspond to partisan advantage.\textless/p\textgreater\textlessp style='text-indent:20px;'\textgreaterThe methods here are set up to be broadly applicable to the use of TDA on large ensembles of data. Many studies will benefit from interpretable summaries of large sets of samples or simulations, and the work here on localization and zoning will readily generalize to other partition problems, which are abundant in scientific applications. For the mathematically and politically rich problem of redistricting in particular, TDA provides a powerful and elegant summarization tool whose findings will be useful for practitioners.\textless/p\textgreater