🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.000803s)
  1. Congestion Barcodes: Exploring the Topology of Urban Congestion Using Persistent Homology (2017)

    Yu Wu, Gabriel Shindnes, Vaibhav Karve, Derrek Yager, Daniel B. Work, Arnab Chakraborty, Richard B. Sowers
    Abstract This work presents a new method to quantify connectivity in transportation networks. Inspired by the field of topological data analysis, we propose a novel approach to explore the robustness of road network connectivity in the presence of congestion on the roadway. The robustness of the pattern is summarized in a congestion barcode, which can be constructed directly from traffic datasets commonly used for navigation. As an initial demonstration, we illustrate the main technique on a publicly available traffic dataset in a neighborhood in New York City.
  2. Spatial Applications of Topological Data Analysis: Cities, Snowflakes, Random Structures, and Spiders Spinning Under the Influence (2020)

    Michelle Feng, Mason A. Porter
    Abstract Spatial networks are ubiquitous in social, geographic, physical, and biological applications. To understand their large-scale structure, it is important to develop methods that allow one to directly probe the effects of space on structure and dynamics. Historically, algebraic topology has provided one framework for rigorously and quantitatively describing the global structure of a space, and recent advances in topological data analysis (TDA) have given scholars a new lens for analyzing network data. In this paper, we study a variety of spatial networks --- including both synthetic and natural ones --- using novel topological methods that we recently developed specifically for analyzing spatial networks. We demonstrate that our methods are able to capture meaningful quantities, with specifics that depend on context, in spatial networks and thereby provide useful insights into the structure of those networks, including a novel approach for characterizing them based on their topological structures. We illustrate these ideas with examples of synthetic networks and dynamics on them, street networks in cities, snowflakes, and webs spun by spiders under the influence of various psychotropic substances.