🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.001171s)
  1. Hepatic Tumor Classification Using Texture and Topology Analysis of Non-Contrast-Enhanced Three-Dimensional T1-Weighted MR Images With a Radiomics Approach (2019)

    Asuka Oyama, Yasuaki Hiraoka, Ippei Obayashi, Yusuke Saikawa, Shigeru Furui, Kenshiro Shiraishi, Shinobu Kumagai, Tatsuya Hayashi, Jun’ichi Kotoku
    Abstract The purpose of this study is to evaluate the accuracy for classification of hepatic tumors by characterization of T1-weighted magnetic resonance (MR) images using two radiomics approaches with machine learning models: texture analysis and topological data analysis using persistent homology. This study assessed non-contrast-enhanced fat-suppressed three-dimensional (3D) T1-weighted images of 150 hepatic tumors. The lesions included 50 hepatocellular carcinomas (HCCs), 50 metastatic tumors (MTs), and 50 hepatic hemangiomas (HHs) found respectively in 37, 23, and 33 patients. For classification, texture features were calculated, and also persistence images of three types (degree 0, degree 1 and degree 2) were obtained for each lesion from the 3D MR imaging data. We used three classification models. In the classification of HCC and MT (resp. HCC and HH, HH and MT), we obtained accuracy of 92% (resp. 90%, 73%) by texture analysis, and the highest accuracy of 85% (resp. 84%, 74%) when degree 1 (resp. degree 1, degree 2) persistence images were used. Our methods using texture analysis or topological data analysis allow for classification of the three hepatic tumors with considerable accuracy, and thus might be useful when applied for computer-aided diagnosis with MR images.
  2. A Stable Multi-Scale Kernel for Topological Machine Learning (2015)

    Jan Reininghaus, Stefan Huber, Ulrich Bauer, Roland Kwitt
    Abstract Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams, a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.
  3. A Klein-Bottle-Based Dictionary for Texture Representation (2014)

    Jose A. Perea, Gunnar Carlsson
    Abstract A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small \$\$n\times n\$\$n×nhigh-contrast patches from natural images in gray-scale accumulate with high density around a surface \$\$\fancyscript\K\\subset \\mathbb \R\\\textasciicircum\n\textasciicircum2\\$\$K⊂Rn2with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008), we present in this paper a novel framework for the estimation and representation of distributions around \$\$\fancyscript\K\\$\$K, of patches from texture images. More specifically, we show that most \$\$n\times n\$\$n×npatches from a given image can be projected onto \$\$\fancyscript\K\\$\$Kyielding a finite sample \$\$S\subset \fancyscript\K\\$\$S⊂K, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from \$\$S\$\$S. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.