🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.002325s)
  1. Coordinate-Free Coverage in Sensor Networks With Controlled Boundaries via Homology (2006)

    V. de Silva, R. Ghrist
    Abstract Tools from computational homology are introduced to verify coverage in an idealized sensor network. These methods are unique in that, while they are coordinate-free and assume no localization or orientation capabilities for the nodes, there are also no probabilistic assumptions. The key ingredient is the theory of homology from algebraic topology. The robustness of these tools is demonstrated by adapting them to a variety of settings, including static planar coverage, 3-D barrier coverage, and time-dependent sweeping coverage. Results are also given on hole repair, error tolerance, optimal coverage, and variable radii. An overview of implementation is given.
  2. Coverage Criterion in Sensor Networks Stable Under Perturbation (2014)

    Yasuaki Hiraoka, Genki Kusano
    Abstract To the coverage problem of sensor networks, V. de Silva and R. Ghrist (2007) developed several approaches based on (persistent) homology theory. Their criteria for the coverage are formulated on the Rips complexes constructed by the sensors, in which their locations are supposed to be fixed. However, the sensors are in general affected by perturbations (e.g., natural phenomena), and hence the stability of the coverage criteria should be also discussed. In this paper, we present a coverage theorem stable under perturbation. Furthermore, we also introduce a method of eliminating redundant cover after perturbation. The coverage theorem is derived by extending the Rips interleaving theorem studied by F. Chazal, V. de Silva, and S. Oudot (2013) into an appropriate relative version.
  3. Applications of Persistent Homology to Time Varying Systems (2013)

    Elizabeth Munch
    Abstract \textlessp\textgreaterThis dissertation extends the theory of persistent homology to time varying systems. Most of the previous work has been dedicated to using this powerful tool in topological data analysis to study static point clouds. In particular, given a point cloud, we can construct its persistence diagram. Since the diagram varies continuously as the point cloud varies continuously, we study the space of time varying persistence diagrams, called vineyards when they were introduced by Cohen-Steiner, Edelsbrunner, and Morozov.\textless/p\textgreater\textlessp\textgreaterWe will first show that with a good choice of metric, these vineyards are stable for small perturbations of their associated point clouds. We will also define a new mean for a set of persistence diagrams based on the work of Mileyko et al. which, unlike the previously defined mean, is continuous for geodesic vineyards. \textless/p\textgreater\textlessp\textgreaterNext, we study the sensor network problem posed by Ghrist and de Silva, and their application of persistent homology to understand when a set of sensors covers a given region. Giving each of these sensors a probability of failure over time, we show that an exact computation of the probability of failure of the whole system is NP-hard, but give an algorithm which can predict failure in the case of a monitored system.\textless/p\textgreater\textlessp\textgreaterFinally, we apply these methods to an automated system which can cluster agents moving in aerial images by their behaviors. We build a data structure for storing and querying the information in real-time, and define behavior vectors which quantify behaviors of interest. This clustering by behavior can be used to find groups of interest, for which we can also quantify behaviors in order to determine whether the group is working together to achieve a common goal, and we speculate that this work can be extended to improving tracking algorithms as well as behavioral predictors.\textless/p\textgreater
  4. Blind Swarms for Coverage in 2-D (2005)

    V. D. Silva, R. Ghrist, A. Muhammad
    Abstract We consider coverage problems in robot sensor networks with minimal sensing capabilities. In particular, we demonstrate that a “blind” swarm of robots with no localization and only a weak form of distance estimation can rigorously determine coverage in a bounded planar domain of unknown size and shape. The methods we introduce come from algebraic topology. I. COVERAGE PROBLEMS Many of the potential applications of robot swarms require information about coverage in a given domain. For example, using a swarm of robot sensors for surveillance and security applications carries with it the charge to maximize, or, preferably, guarantee coverage. Such applications include networks of security cameras, mine field sweeping via networked robots [18], and oceanographic sampling [4]. In these contexts, each robot has some coverage domain, and one wishes to know about the union of these coverage domains. Such problems are also crucial in applications not involving robots directly, e.g., communication networks. As a preliminary analysis, we consider the static “field” coverage problem, in which robots are assumed stationary and the goal is to verify blanket coverage of a given domain. There is a large literature on this subject; see, e.g., [7], [1], [16]. In addition, there are variants on these problems involving “barrier” coverage to separate regions. Dynamic or “sweeping” coverage [3] is a common and challenging task with applications ranging from security to vacuuming. Although a sensor network composed of robots will have dynamic capabilities, we restrict attention in this brief paper to the static case in order to lay the groundwork for future inquiry. There are two primary approaches to static coverage problems in the literature. The first uses computational geometry tools applied to exact node coordinates. This typically involves ‘ruler-and-compass’ style geometry [10] or Delaunay triangulations of the domain [16], [14], [20]. Such approaches are very rigid with regards to inputs: one must know exact node coordinates and one must know the geometry of the domain precisely to determine the Delaunay complex. To alleviate the former requirement, many authors have turned to probabilistic tools. For example, in [13], the author assumes a randomly and uniformly distributed collection of nodes in a domain with a fixed geometry and proves expected area coverage. Other approaches [15], [19] give percolationtype results about coverage and network integrity for randomly distributed nodes. The drawback of these methods is the need for strong assumptions about the exact shape of the domain, as well as the need for a uniform distribution of nodes. In the sensor networks community, there is a compelling interest (and corresponding burgeoning literature) in determining properties of a network in which the nodes do not possess coordinate data. One example of a coordinate-free approach is in [17], which gives a heuristic method for geographic routing without coordinate data: among the large literature arising from this paper, we note in particular the mathematical analysis of this approach in [11]. To our knowledge, noone has treated the coverage problem in a coordinate-free setting. In this note, we introduce a new set of tools for answering coverage problems in robotics and sensor networks with minimal assumptions about domain geometry and node localization. We provide a sufficiency criterion for coverage. We do not answer the problem of how the nodes should be placed in order to maximize coverage, nor the minimum number of such nodes necessary; neither do we address how to reallocate nodes to fill coverage holes.