🍩 Database of Original & NonTheoretical Uses of Topology
(found 5 matches in 0.002397s)


Topological Data Analysis: Concepts, Computation, and Applications in Chemical Engineering (2021)
Alexander D. Smith, Paweł Dłotko, Victor M. ZavalaAbstract
A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysis (TDA) is a field of mathematics that analyzes data from a fundamentally different perspective. TDA represents datasets as geometric objects and provides dimensionality reduction techniques that project such objects onto lowdimensional descriptors. The key properties of these descriptors (also known as topological features) are that they provide multiscale information and that they are stable under perturbations (e.g., noise, translation, and rotation). In this work, we review the key mathematical concepts and methods of TDA and present different applications in chemical engineering. 
Statistical Topological Data Analysis  A Kernel Perspective (2015)
Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, Ulrich BauerAbstract
We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernelbased learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its effective use in twosample hypothesis testing on synthetic as well as realworld data. 
Topological Detection of Phenomenological Bifurcations With Unreliable Kernel Density Estimates (2024)
Sunia Tanweer, Firas A. KhasawnehAbstract
Phenomenological (Ptype) bifurcations are qualitative changes in stochastic dynamical systems whereby the stationary probability density function (PDF) changes its topology. The current state of the art for detecting these bifurcations requires reliable kernel density estimates computed from an ensemble of system realizations. However, in several real world signals such as Big Data, only a single system realization is available—making it impossible to estimate a reliable kernel density. This study presents an approach for detecting Ptype bifurcations using unreliable density estimates. The approach creates an ensemble of objects from Topological Data Analysis (TDA) called persistence diagrams from the system’s sole realization and statistically analyzes the resulting set. We compare several methods for replicating the original persistence diagram including Gibbs point process modelling, Pairwise Interaction Point Modelling, and subsampling. We show that for the purpose of predicting a bifurcation, the simple method of subsampling exceeds the other two methods of point process modelling in performance. 
A Topological Framework for Identifying Phenomenological Bifurcations in Stochastic Dynamical Systems (2024)
Sunia Tanweer, Firas A. Khasawneh, Elizabeth Munch, Joshua R. TempelmanAbstract
Changes in the parameters of dynamical systems can cause the state of the system to shift between different qualitative regimes. These shifts, known as bifurcations, are critical to study as they can indicate when the system is about to undergo harmful changes in its behavior. In stochastic dynamical systems, there is particular interest in Ptype (phenomenological) bifurcations, which can include transitions from a monostable state to multistable states, the appearance of stochastic limit cycles and other features in the probability density function (PDF) of the system’s state. Current practices are limited to systems with small state spaces, cannot detect all possible behaviors of the PDFs and mandate human intervention for visually identifying the change in the PDF. In contrast, this study presents a new approach based on Topological Data Analysis that uses superlevel persistence to mathematically quantify Ptype bifurcations in stochastic systems through a “homological bifurcation plot”—which shows the changing ranks of 0th and 1st homology groups, through Betti vectors. Using these plots, we demonstrate the successful detection of Pbifurcations on the stochastic Duffing, RaleighVander Pol and Quintic Oscillators given their analytical PDFs, and elaborate on how to generate an estimated homological bifurcation plot given a kernel density estimate (KDE) of these systems by employing a tool for finding topological consistency between PDFs and KDEs.