🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.001489s)
  1. Pore Geometry Characterization by Persistent Homology Theory (2018)

    Fei Jiang, Takeshi Tsuji, Tomoyuki Shirai
    Abstract Rock pore geometry has heterogeneous characteristics and is scale dependent. This feature in a geological formation differs significantly from artificial materials and makes it difficult to predict hydrologic and elastic properties. To characterize pore heterogeneity, we propose an evaluation method that exploits the recently developed persistent homology theory. In the proposed method, complex pore geometry is first represented as sphere cloud data using a pore-network extraction method. Then, a persistence diagram (PD) is calculated from the point cloud, which represents the spatial distribution of pore bodies. A new parameter (distance index H) derived from the PD is proposed to characterize the degree of rock heterogeneity. Low H value indicates high heterogeneity. A new empirical equation using this index H is proposed to predict the effective elastic modulus of porous media. The results indicate that the proposed PD analysis is very efficient for extracting topological feature of pore geometry.
  2. Pore Configuration Landscape of Granular Crystallization (2017)

    Mohammad Saadatfar, Hiroshi Takeuchi, Vanessa Robins, Nicolas Francois, Yisuaki Hiraoka
    Abstract Emergence and growth of crystalline domains in granular media remains under-explored. Here, the authors analyse tomographic snapshots from partially recrystallized packings of spheres using persistent homology and find agreement with proposed transitions based on continuous deformation of octahedral and tetrahedral voids.
  3. Morse Theory and Persistent Homology for Topological Analysis of 3D Images of Complex Materials (2014)

    O. Delgado-Friedrichs, V. Robins, A. Sheppard
    Abstract We develop topologically accurate and compatible definitions for the skeleton and watershed segmentation of a 3D digital object that are computed by a single algorithm. These definitions are based on a discrete gradient vector field derived from a signed distance transform. This gradient vector field is amenable to topological analysis and simplification via For-man's discrete Morse theory and provides a filtration that can be used as input to persistent homology algorithms. Efficient implementations allow us to process large-scale x-ray micro-CT data of rock cores and other materials.