🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001121s)
  1. Machine Learning and Topological Data Analysis Identify Unique Features of Human Papillae in 3D Scans (2023)

    Rayna Andreeva, Anwesha Sarkar, Rik Sarkar
    Abstract The tongue surface houses a range of papillae that are integral to the mechanics and chemistry of taste and textural sensation. Although gustatory function of papillae is well investigated, the uniqueness of papillae within and across individuals remains elusive. Here, we present the first machine learning framework on 3D microscopic scans of human papillae (n = 2092), uncovering the uniqueness of geometric and topological features of papillae. The finer differences in shapes of papillae are investigated computationally based on a number of features derived from discrete differential geometry and computational topology. Interpretable machine learning techniques show that persistent homology features of the papillae shape are the most effective in predicting the biological variables. Models trained on these features with small volumes of data samples predict the type of papillae with an accuracy of 85%. The papillae type classification models can map the spatial arrangement of filiform and fungiform papillae on a surface. Remarkably, the papillae are found to be distinctive across individuals and an individual can be identified with an accuracy of 48% among the 15 participants from a single papillae. Collectively, this is the first unprecedented evidence demonstrating that tongue papillae can serve as a unique identifier inspiring new research direction for food preferences and oral diagnostics.
  2. The Persistence of Large Scale Structures I: Primordial Non-Gaussianity (2020)

    Matteo Biagetti, Alex Cole, Gary Shiu
    Abstract We develop an analysis pipeline for characterizing the topology of large scale structure and extracting cosmological constraints based on persistent homology. Persistent homology is a technique from topological data analysis that quantifies the multiscale topology of a data set, in our context unifying the contributions of clusters, filament loops, and cosmic voids to cosmological constraints. We describe how this method captures the imprint of primordial local non-Gaussianity on the late-time distribution of dark matter halos, using a set of N-body simulations as a proxy for real data analysis. For our best single statistic, running the pipeline on several cubic volumes of size \$40~(\rm\Gpc/h\)\textasciicircum\3\\$, we detect \$f_\\rm NL\\textasciicircum\\rm loc\=10\$ at \$97.5\%\$ confidence on \$\sim 85\%\$ of the volumes. Additionally we test our ability to resolve degeneracies between the topological signature of \$f_\\rm NL\\textasciicircum\\rm loc\\$ and variation of \$\sigma_8\$ and argue that correctly identifying nonzero \$f_\\rm NL\\textasciicircum\\rm loc\\$ in this case is possible via an optimal template method. Our method relies on information living at \$\mathcal\O\(10)\$ Mpc/h, a complementary scale with respect to commonly used methods such as the scale-dependent bias in the halo/galaxy power spectrum. Therefore, while still requiring a large volume, our method does not require sampling long-wavelength modes to constrain primordial non-Gaussianity. Moreover, our statistics are interpretable: we are able to reproduce previous results in certain limits and we make new predictions for unexplored observables, such as filament loops formed by dark matter halos in a simulation box.