(found 2 matches in 0.001291s)
-
Topological Descriptors Help Predict Guest Adsorption in Nanoporous Materials
(2020)
Aditi S. Krishnapriyan, Maciej Haranczyk, Dmitriy Morozov
Abstract
Machine learning has emerged as an attractive alternative to experiments and simulations for predicting material properties. Usually, such an approach relies on specific domain knowledge for feature design: each learning target requires careful selection of features that an expert recognizes as important for the specific task. The major drawback of this approach is that computation of only a few structural features has been implemented so far, and it is difficult to tell a priori which features are important for a particular application. The latter problem has been empirically observed for predictors of guest uptake in nanoporous materials: local and global porosity features become dominant descriptors at low and high pressures, respectively. We investigate a feature representation of materials using tools from topological data analysis. Specifically, we use persistent homology to describe the geometry of nanoporous materials at various scales. We combine our topological descriptor with traditional structural features and investigate the relative importance of each to the prediction tasks. We demonstrate an application of this feature representation by predicting methane adsorption in zeolites, for pressures in the range of 1-200 bar. Our results not only show a considerable improvement compared to the baseline, but they also highlight that topological features capture information complementary to the structural features: this is especially important for the adsorption at low pressure, a task particularly difficult for the traditional features. Furthermore, by investigation of the importance of individual topological features in the adsorption model, we are able to pinpoint the location of the pores that correlate best to adsorption at different pressure, contributing to our atom-level understanding of structure-property relationships.
-
Topological Differential Testing
(2020)
Kristopher Ambrose, Steve Huntsman, Michael Robinson, Matvey Yutin
Abstract
We introduce topological differential testing (TDT), an approach to extracting the consensus behavior of a set of programs on a corpus of inputs. TDT uses the topological notion of a simplicial complex (and implicitly draws on richer topological notions such as sheaves and persistence) to determine inputs that cause inconsistent behavior and in turn reveal \emph\de facto\ input specifications. We gently introduce TDT with a toy example before detailing its application to understanding the PDF file format from the behavior of various parsers. Finally, we discuss theoretical details and other possible applications.