(found 2 matches in 0.001926s)

A Primer on Topological Data Analysis to Support Image Analysis Tasks in Environmental Science
(2023)
Lander Ver Hoef, Henry Adams, Emily J. King, Imme EbertUphoff
Abstract
Abstract Topological data analysis (TDA) is a tool from data science and mathematics that is beginning to make waves in environmental science. In this work, we seek to provide an intuitive and understandable introduction to a tool from TDA that is particularly useful for the analysis of imagery, namely, persistent homology. We briefly discuss the theoretical background but focus primarily on understanding the output of this tool and discussing what information it can glean. To this end, we frame our discussion around a guiding example of classifying satellite images from the sugar, fish, flower, and gravel dataset produced for the study of mesoscale organization of clouds by Rasp et al. We demonstrate how persistent homology and its vectorization, persistence landscapes, can be used in a workflow with a simple machine learning algorithm to obtain good results, and we explore in detail how we can explain this behavior in terms of imagelevel features. One of the core strengths of persistent homology is how interpretable it can be, so throughout this paper we discuss not just the patterns we find but why those results are to be expected given what we know about the theory of persistent homology. Our goal is that readers of this paper will leave with a better understanding of TDA and persistent homology, will be able to identify problems and datasets of their own for which persistent homology could be helpful, and will gain an understanding of the results they obtain from applying the included GitHub example code. Significance Statement Information such as the geometric structure and texture of image data can greatly support the inference of the physical state of an observed Earth system, for example, in remote sensing to determine whether wildfires are active or to identify local climate zones. Persistent homology is a branch of topological data analysis that allows one to extract such information in an interpretable wayâ€”unlike blackbox methods like deep neural networks. The purpose of this paper is to explain in an intuitive manner what persistent homology is and how researchers in environmental science can use it to create interpretable models. We demonstrate the approach to identify certain cloud patterns from satellite imagery and find that the resulting model is indeed interpretable.

Ghrist Barcoded Video Frames. Application in Detecting Persistent Visual Scene Surface Shapes Captured in Videos
(2019)
Arjuna P. H. Don, James F. Peters
Abstract
This article introduces an application of Ghrist barcodes in the study of persistent Betti numbers derived from vortex nerve complexes found in triangulations of video frames. A Ghrist barcode (also called a persistence barcode) is a topology of data pic tograph useful in representing the persistence of the features of changing shapes. The basic approach is to introduce a free Abelian group representation of intersecting filled polygons on the barycenters of the triangles of Alexandroff nerves. An Alexandroff nerve is a maximal collection of triangles of a common vertex in the triangulation of a finite, bounded planar region. In our case, the planar region is a video frame. A Betti number is a count of the number of generators is a finite Abelian group. The focus here is on the persistent Betti numbers across sequences of triangulated video frames. Each Betti number is mapped to an entry in a Ghrist barcode. Two main results are given, namely, vortex nerves are EdelsbrunnerHarer nerve complexes and the Betti number of a vortex nerve equals k + 2 for a vortex nerve containing k edges attached between a pair of vortex cycles in the nerve.