🍩 Database of Original & Non-Theoretical Uses of Topology

(found 6 matches in 0.001752s)
  1. Topological Pattern Recognition for Point Cloud Data* (2014)

    Gunnar Carlsson
    Abstract In this paper we discuss the adaptation of the methods of homology from algebraic topology to the problem of pattern recognition in point cloud data sets. The method is referred to as persistent homology, and has numerous applications to scientific problems. We discuss the definition and computation of homology in the standard setting of simplicial complexes and topological spaces, then show how one can obtain useful signatures, called barcodes, from finite metric spaces, thought of as sampled from a continuous object. We present several different cases where persistent homology is used, to illustrate the different ways in which the method can be applied.
  2. A Multi-Parameter Persistence Framework for Mathematical Morphology (2021)

    Yu-Min Chung, Sarah Day, Chuan-Shen Hu
    Abstract The field of mathematical morphology offers well-studied techniques for image processing. In this work, we view morphological operations through the lens of persistent homology, a tool at the heart of the field of topological data analysis. We demonstrate that morphological operations naturally form a multiparameter filtration and that persistent homology can then be used to extract information about both topology and geometry in the images as well as to automate methods for optimizing the study and rendering of structure in images. For illustration, we apply this framework to analyze noisy binary, grayscale, and color images.
  3. Topology-Aware Segmentation Using Discrete Morse Theory (2021)

    Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, Chao Chen
    Abstract In the segmentation of fine-scale structures from natural and biomedical images, per-pixel accuracy is not the only metric of concern. Topological correctness, such as vessel connectivity and membrane closure, is crucial for downstream analysis tasks. In this paper, we propose a new approach to train deep image segmentation networks for better topological accuracy. In particular, leveraging the power of discrete Morse theory (DMT), we identify global structures, including 1D skeletons and 2D patches, which are important for topological accuracy. Trained with a novel loss based on these global structures, the network performance is significantly improved especially near topologically challenging locations (such as weak spots of connections and membranes). On diverse datasets, our method achieves superior performance on both the DICE score and topological metrics.
  4. Topological Regularization for Dense Prediction (2021)

    Deqing Fu, Bradley J. Nelson
    Abstract Dense prediction tasks such as depth perception and semantic segmentation are important applications in computer vision that have a concrete topological description in terms of partitioning an image into connected components or estimating a function with a small number of local extrema corresponding to objects in the image. We develop a form of topological regularization based on persistent homology that can be used in dense prediction tasks with these topological descriptions. Experimental results show that the output topology can also appear in the internal activations of trained neural networks which allows for a novel use of topological regularization to the internal states of neural networks during training, reducing the computational cost of the regularization. We demonstrate that this topological regularization of internal activations leads to improved convergence and test benchmarks on several problems and architectures.
  5. Persistent Homology for Breast Tumor Classification Using Mammogram Scans (2022)

    Aras Asaad, Dashti Ali, Taban Majeed, Rasber Rashid
    Abstract An Important tool in the field topological data analysis is known as persistent Homology (PH) which is used to encode abstract representation of the homology of data at different resolutions in the form of persistence diagram (PD). In this work we build more than one PD representation of a single image based on a landmark selection method, known as local binary patterns, that encode different types of local textures from images. We employed different PD vectorizations using persistence landscapes, persistence images, persistence binning (Betti Curve) and statistics. We tested the effectiveness of proposed landmark based PH on two publicly available breast abnormality detection datasets using mammogram scans. Sensitivity of landmark based PH obtained is over 90% in both datasets for the detection of abnormal breast scans. Finally, experimental results give new insights on using different types of PD vectorizations which help in utilising PH in conjunction with machine learning classifiers.
  6. Classification of COVID-19 via Homology of CT-SCAN (2021)

    Sohail Iqbal, H. Fareed Ahmed, Talha Qaiser, Muhammad Imran Qureshi, Nasir Rajpoot
    Abstract In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" i̧tep\soares2020sars\, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of \$99.42\% \$, accuracy \$99.416\%\$, precision \$99.41\%\$, and recall \$99.42\%\$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.