🍩 Database of Original & Non-Theoretical Uses of Topology
(found 10 matches in 0.002234s)
-
-
Ultrahigh-Pressure Form of \$\Mathrm\Si\\\mathrm\O\\_\2\\$ Glass With Dense Pyrite-Type Crystalline Homology (2019)
M. Murakami, S. Kohara, N. Kitamura, J. Akola, H. Inoue, A. Hirata, Y. Hiraoka, Y. Onodera, I. Obayashi, J. Kalikka, N. Hirao, T. Musso, A. S. Foster, Y. Idemoto, O. Sakata, Y. OhishiAbstract
High-pressure synthesis of denser glass has been a longstanding interest in condensed-matter physics and materials science because of its potentially broad industrial application. Nevertheless, understanding its nature under extreme pressures has yet to be clarified due to experimental and theoretical challenges. Here we reveal the formation of OSi4 tetraclusters associated with that of SiO7 polyhedra in SiO2 glass under ultrahigh pressures to 200 gigapascal confirmed both experimentally and theoretically. Persistent homology analyses with molecular dynamics simulations found increased packing fraction of atoms whose topological diagram at ultrahigh pressures is similar to a pyrite-type crystalline phase, although the formation of tetraclusters is prohibited in the crystalline phase. This critical difference would be caused by the potential structural tolerance in the glass for distortion of oxygen clusters. Furthermore, an expanded electronic band gap demonstrates that chemical bonds survive at ultrahigh pressure. This opens up the synthesis of topologically disordered dense oxide glasses.Community Resources
-
Medium-Range Order Structure Controls Thermal Stability of Pores in Zeolitic Imidazolate Frameworks (2023)
Rasmus Christensen, Yossi Bokor Bleile, Søren S. Sørensen, Christophe A. N. Biscio, Lisbeth Fajstrup, Morten M. Smedskjaer -
A Collaborative Visual Analytics Suite for Protein Folding Research (2014)
William Harvey, In-Hee Park, Oliver Rübel, Valerio Pascucci, Peer-Timo Bremer, Chenglong Li, Yusu Wang -
Liquid Structures Characterized by a Combination of the Persistent Homology Analysis and Molecular Dynamics Simulation (2018)
Kohei Sasaki, Ryo Okajima, Takefumi Yamashita -
Persistent Homology Analysis of Osmolyte Molecular Aggregation and Their Hydrogen-Bonding Networks (2019)
Kelin Xia, D. Vijay Anand, Saxena Shikhar, Yuguang MuAbstract
Dramatically different properties have been observed for two types of osmolytes, i.e., trimethylamine N-oxide (TMAO) and urea, in a protein folding process. Great progress has been made in revealing the potential underlying mechanism of these two osmolyte systems. However, many problems still remain unsolved. In this paper, we propose to use the persistent homology to systematically study the osmolytes’ molecular aggregation and their hydrogen-bonding network from a global topological perspective. It has been found that, for the first time, TMAO and urea show two extremely different topological behaviors, i.e., an extensive network and local clusters, respectively. In general, TMAO forms highly consistent large loop or circle structures in high concentrations. In contrast, urea is more tightly aggregated locally. Moreover, the resulting hydrogen-bonding networks also demonstrate distinguishable features. With a concentration increase, TMAO hydrogen-bonding networks vary greatly in their total number of loop structures and large-sized loop structures consistently increase. In contrast, urea hydrogen-bonding networks remain relatively stable with slight reduction of the total loop number. Moreover, the persistent entropy (PE) is, for the first time, used in characterization of the topological information of the aggregation and hydrogen-bonding networks. The average PE systematically increases with the concentration for both TMAO and urea, and decreases in their hydrogen-bonding networks. But their PE variances have totally different behaviors. Finally, topological features of the hydrogen-bonding networks are found to be highly consistent with those from the ion aggregation systems, indicating that our topological invariants can characterize intrinsic features of the “structure making” and “structure breaking” systems. -
Topological Extraction and Tracking of Defects in Crystal Structures (2011)
Sebastian Grottel, Carlos A. Dietrich, João L. D. Comba, Thomas ErtlAbstract
Interfaces between materials with different mechanical properties play an important role in technical applications. Nowadays molecular dynamics simulations are used to observe the behavior of such compound materials at the atomic level. Due to different atom crystal sizes, dislocations in the atom crystal structure occur once external forces are applied, and it has been observed that studying the change of thesedislocations can provide further understanding of macroscopic attributes like elasticity and plasticity. Standard visualization techniques such as the rendering of individual atoms work for 2D data or sectional views; however, visualizingdislocations in 3D using such methods usually fail due to occlusion and clutter. In this work we propose to extract and visualize the structure ofdislocations, which summarizes the commonly employed filtered atomistic renderings into a concise representation. The benefits of our approach are clearer images while retaining relevant data and easier visual tracking of topological changes over time. -
Statistical Topology of Bond Networks With Applications to Silica (2020)
B. Schweinhart, D. Rodney, J. K. MasonAbstract
Whereas knowledge of a crystalline material's unit cell is fundamental to understanding the material's properties and behavior, there are no obvious analogs to unit cells for disordered materials despite the frequent existence of considerable medium-range order. This article views a material's structure as a collection of local atomic environments that are sampled from some underlying probability distribution of such environments, with the advantage of offering a unified description of both ordered and disordered materials. Crystalline materials can then be regarded as special cases where the underlying probability distribution is highly concentrated around the traditional unit cell. The 𝐻1 barcode is proposed as a descriptor of local atomic environments suitable for disordered bond networks and is applied with three other descriptors to molecular dynamics simulations of silica glasses. Each descriptor reliably distinguishes the structure of glasses produced at different cooling rates, with the 𝐻1 barcode and coordination profile providing the best separation. The approach is generally applicable to any system that can be represented as a sparse graph.Community Resources
-
Persistent Homology Analysis of Ion Aggregations and Hydrogen-Bonding Networks (2018)
Kelin XiaAbstract
Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models. -
Understanding Diffraction Patterns of Glassy, Liquid and Amorphous Materials via Persistent Homology Analyses (2019)
Yohei Onodera, Shinji Kohara, Shuta Tahara, Atsunobu Masuno, Hiroyuki Inoue, Motoki Shiga, Akihiko Hirata, Koichi Tsuchiya, Yasuaki Hiraoka, Ippei Obayashi, Koji Ohara, Akitoshi Mizuno, Osami SakataAbstract
The structure of glassy, liquid, and amorphous materials is still not well understood, due to the insufficient structural information from diffraction data. In this article, attempts are made to understand the origin of diffraction peaks, particularly of the first sharp diffraction peak (FSDP, Q1), the principal peak (PP, Q2), and the third peak (Q3), observed in the measured diffraction patterns of disordered materials whose structure contains tetrahedral motifs. It is confirmed that the FSDP (Q1) is not a signature of the formation of a network, because an FSDP is observed in tetrahedral molecular liquids. It is found that the PP (Q2) reflects orientational correlations of tetrahedra. Q3, that can be observed in all disordered materials, even in common liquid metals, stems from simple pair correlations. Moreover, information on the topology of disordered materials was revealed by utilizing persistent homology analyses. The persistence diagram of silica (SiO2) glass suggests that the shape of rings in the glass is similar not only to those in the crystalline phase with comparable density (α-cristobalite), but also to rings present in crystalline phases with higher density (α-quartz and coesite); this is thought to be the signature of disorder. Furthermore, we have succeeded in revealing the differences, in terms of persistent homology, between tetrahedral networks and tetrahedral molecular liquids, and the difference/similarity between liquid and amorphous (glassy) states. Our series of analyses demonstrated that a combination of diffraction data and persistent homology analyses is a useful tool for allowing us to uncover structural features hidden in halo pattern of disordered materials.