🍩 Database of Original & Non-Theoretical Uses of Topology

(found 9 matches in 0.001487s)
  1. Unsupervised Topological Learning for Identification of Atomic Structures (2022)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA) concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic positions and without a priori knowledge, our method allows for an autonomous identification of clusters of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in materials at the atomic scale.
  2. Unsupervised Topological Learning Approach of Crystal Nucleation (2022)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unravelled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometre length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to monatomic metals, it shows that both translational and orientational ordering always come into play simultaneously as a result of the strong bonding when homogeneous nucleation starts in regions with low five-fold symmetry. It also reveals the specificity of the nucleation pathways depending on the element considered, with features beyond the hypothesis of Classical Nucleation Theory.
  3. Unsupervised Topological Learning Approach of Crystal Nucleation in Pure Tantalum (2021)

    Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël Jakse
    Abstract Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unraveled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometer length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low five-fold symmetry.
  4. Representations of Energy Landscapes by Sublevelset Persistent Homology: An Example With N-Alkanes (2020)

    Joshua Mirth, Yanqin Zhai, Johnathan Bush, Enrique G. Alvarado, Howie Jordan, Mark Heim, Bala Krishnamoorthy, Markus Pflaum, Aurora Clark, Y. Z, Henry Adams
    Abstract Encoding the complex features of an energy landscape is a challenging task, and often chemists pursue the most salient features (minima and barriers) along a highly reduced space, i.e. 2- or 3-dimensions. Even though disconnectivity graphs or merge trees summarize the connectivity of the local minima of an energy landscape via the lowest-barrier pathways, there is more information to be gained by also considering the topology of each connected component at different energy thresholds (or sublevelsets). We propose sublevelset persistent homology as an appropriate tool for this purpose. Our computations on the configuration phase space of n-alkanes from butane to octane allow us to conjecture, and then prove, a complete characterization of the sublevelset persistent homology of the alkane \$C_m H_\2m+2\\$ potential energy landscapes, for all \$m\$, and in all homological dimensions. We further compare both the analytical configurational potential energy landscapes and sampled data from molecular dynamics simulation, using the united and all-atom descriptions of the intramolecular interactions. In turn, this supports the application of distance metrics to quantify sampling fidelity and lays the foundation for future work regarding new metrics that quantify differences between the topological features of high-dimensional energy landscapes.
  5. Persistent Homology Analysis of Osmolyte Molecular Aggregation and Their Hydrogen-Bonding Networks (2019)

    Kelin Xia, D. Vijay Anand, Saxena Shikhar, Yuguang Mu
    Abstract Dramatically different properties have been observed for two types of osmolytes, i.e., trimethylamine N-oxide (TMAO) and urea, in a protein folding process. Great progress has been made in revealing the potential underlying mechanism of these two osmolyte systems. However, many problems still remain unsolved. In this paper, we propose to use the persistent homology to systematically study the osmolytes’ molecular aggregation and their hydrogen-bonding network from a global topological perspective. It has been found that, for the first time, TMAO and urea show two extremely different topological behaviors, i.e., an extensive network and local clusters, respectively. In general, TMAO forms highly consistent large loop or circle structures in high concentrations. In contrast, urea is more tightly aggregated locally. Moreover, the resulting hydrogen-bonding networks also demonstrate distinguishable features. With a concentration increase, TMAO hydrogen-bonding networks vary greatly in their total number of loop structures and large-sized loop structures consistently increase. In contrast, urea hydrogen-bonding networks remain relatively stable with slight reduction of the total loop number. Moreover, the persistent entropy (PE) is, for the first time, used in characterization of the topological information of the aggregation and hydrogen-bonding networks. The average PE systematically increases with the concentration for both TMAO and urea, and decreases in their hydrogen-bonding networks. But their PE variances have totally different behaviors. Finally, topological features of the hydrogen-bonding networks are found to be highly consistent with those from the ion aggregation systems, indicating that our topological invariants can characterize intrinsic features of the “structure making” and “structure breaking” systems.
  6. Persistent Homology Analysis of Ion Aggregations and Hydrogen-Bonding Networks (2018)

    Kelin Xia
    Abstract Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models.
  7. Structural Insight Into RNA Hairpin Folding Intermediates (2008)

    Gregory R. Bowman, Xuhui Huang, Yuan Yao, Jian Sun, Gunnar Carlsson, Leonidas J. Guibas, Vijay S. Pande
    Abstract , Hairpins are a ubiquitous secondary structure motif in RNA molecules. Despite their simple structure, there is some debate over whether they fold in a two-state or multi-state manner. We have studied the folding of a small tetraloop hairpin using a serial version of replica exchange molecular dynamics on a distributed computing environment. On the basis of these simulations, we have identified a number of intermediates that are consistent with experimental results. We also find that folding is not simply the reverse of high-temperature unfolding and suggest that this may be a general feature of biomolecular folding.
  8. Persistent Voids: A New Structural Metric for Membrane Fusion (2007)

    Peter M. Kasson, Afra Zomorodian, Sanghyun Park, Nina Singhal, Leonidas J. Guibas, Vijay S. Pande
    Abstract Motivation: Membrane fusion constitutes a key stage in cellular processes such as synaptic neurotransmission and infection by enveloped viruses. Current experimental assays for fusion have thus far been unable to resolve early fusion events in fine structural detail. We have previously used molecular dynamics simulations to develop mechanistic models of fusion by small lipid vesicles. Here, we introduce a novel structural measurement of vesicle topology and fusion geometry: persistent voids.Results: Persistent voids calculations enable systematic measurement of structural changes in vesicle fusion by assessing fusion stalk widths. They also constitute a generally applicable technique for assessing lipid topological change. We use persistent voids to compute dynamic relationships between hemifusion neck widening and formation of a full fusion pore in our simulation data. We predict that a tightly coordinated process of hemifusion neck expansion and pore formation is responsible for the rapid vesicle fusion mechanism, while isolated enlargement of the hemifusion diaphragm leads to the formation of a metastable hemifused intermediate. These findings suggest that rapid fusion between small vesicles proceeds via a small hemifusion diaphragm rather than a fully expanded one.Availability: Software available upon request pending public release.Contact:kasson@cmgm.stanford-edu or pande@stanford.eduSupplementary information: Supplementary data are available on Bioinformatics online.