🍩 Database of Original & NonTheoretical Uses of Topology
(found 13 matches in 0.002104s)


Unsupervised Topological Learning for Identification of Atomic Structures (2022)
Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël JakseAbstract
We propose an unsupervised learning methodology with descriptors based on topological data analysis (TDA) concepts to describe the local structural properties of materials at the atomic scale. Based only on atomic positions and without a priori knowledge, our method allows for an autonomous identification of clusters of atomic structures through a Gaussian mixture model. We apply successfully this approach to the analysis of elemental Zr in the crystalline and liquid states as well as homogeneous nucleation events under deep undercooling conditions. This opens the way to deeper and autonomous study of complex phenomena in materials at the atomic scale. 
Unsupervised Topological Learning Approach of Crystal Nucleation (2022)
Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël JakseAbstract
Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unravelled. Crystal nucleation, the early stages where the liquidtosolid transition occurs upon undercooling, initiates at the atomic level on nanometre length and subpicoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to monatomic metals, it shows that both translational and orientational ordering always come into play simultaneously as a result of the strong bonding when homogeneous nucleation starts in regions with low fivefold symmetry. It also reveals the specificity of the nucleation pathways depending on the element considered, with features beyond the hypothesis of Classical Nucleation Theory. 
Unsupervised Topological Learning Approach of Crystal Nucleation in Pure Tantalum (2021)
Sébastien Becker, Emilie Devijver, Rémi Molinier, Noël JakseAbstract
Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unraveled. Crystal nucleation, the early stages where the liquidtosolid transition occurs upon undercooling, initiates at the atomic level on nanometer length and subpicoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to a monatomic metal, namely Tantalum (Ta), it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low fivefold symmetry. 
Tenfold Topology of Crystals (2020)
Eyal Cornfeld, Shachar CarmeliAbstract
The celebrated tenfoldway of AltlandZirnbauer symmetry classes discern any quantum system by its pattern of nonspatial symmetries. It lays at the core of the periodic table of topological insulators and superconductors which provided a complete classification of weaklyinteracting electrons' noncrystalline topological phases for all symmetry classes. Over recent years, a plethora of topological phenomena with diverse surface states has been discovered in crystalline materials. In this paper, we obtain an exhaustive classification of topologically distinct groundstates as well as topological phases with anomalous surface states of crystalline topological insulators and superconductors for key spacegroups, layergroups, and rodgroups. This is done in a unified manner for the full tenfoldway of AltlandZirnbauer nonspatial symmetry classes. We establish a comprehensive paradigm that harnesses the modern mathematical framework of equivariant spectra; it allows us to obtain results applicable to generic topological classification problems. In particular, this paradigm provides efficient computational tools that enable an inherently unified treatment of the full tenfoldway. 
Topological Electronic Structure and Weyl Points in Nonsymmorphic Hexagonal Materials (2020)
Rafael GonzálezHernández, Erick Tuiran, Bernardo UribeAbstract
Using topological band theory analysis we show that the nonsymmorphic symmetry operations in hexagonal lattices enforce Weyl points at the screwinvariant highsymmetry lines of the band structure. The corepresentation theory and connectivity group theory show that Weyl points are generated by band crossings in accordionlike and hourglasslike dispersion relations. These Weyl points are stable against weak perturbations and are protected by the screw rotation symmetry. Based on firstprinciples calculations we found a complete agreement between the topological predicted energy dispersion relations and real hexagonal materials. Topological charge (chirality) and Berry curvature calculations show the simultaneous formation of Weyl points and nodallines in 4d transitionmetal trifluorides such as AgF3 and AuF3. Furthermore, a large intrinsic spinHall conductivity was found due to the combined strong spinorbit coupling and multiple Weylpoint crossings in the electronic structure. These materials could be used to the spin/charge conversion in more energyefficient spintronic devices. 
FourDimensional Observation of Ductile Fracture in Sintered Iron Using Synchrotron XRay Laminography (2019)
Y. Ozaki, Y. Mugita, M. Aramaki, O. Furukimi, S. Oue, F. Jiang, T. Tsuji, A. Takeuchi, M. Uesugi, K. AshizukaAbstract
Synchrotron Xray laminography was used to examine the timedependent evolution of the threedimensional (3D) morphology of micropores in sintered iron during the tensile test. 3D snapshots showed that the networked open pores grow wider than 20 µm along the tensile direction, resulting in the internal necking of the specimen. Subsequently, these pores initiated the cracks perpendicular to the tensile direction by coalescing with the surrounding preexisting microvoids or with the secondarygenerated voids immediately before fracture. Topological analysis of the barycentric positions of these microvoids showed that they form the twodimensional networks within the ∼20 µm of radius area. These observations strongly indicate that the microvoid coalescence could occur on shear planes formed close to the enlarged open pores or between closed pores by strain accumulation and play an important role in the crack initiation. 
UltrahighPressure Form of \$\Mathrm\Si\\\mathrm\O\\_\2\\$ Glass With Dense PyriteType Crystalline Homology (2019)
M. Murakami, S. Kohara, N. Kitamura, J. Akola, H. Inoue, A. Hirata, Y. Hiraoka, Y. Onodera, I. Obayashi, J. Kalikka, N. Hirao, T. Musso, A. S. Foster, Y. Idemoto, O. Sakata, Y. OhishiAbstract
Highpressure synthesis of denser glass has been a longstanding interest in condensedmatter physics and materials science because of its potentially broad industrial application. Nevertheless, understanding its nature under extreme pressures has yet to be clarified due to experimental and theoretical challenges. Here we reveal the formation of OSi4 tetraclusters associated with that of SiO7 polyhedra in SiO2 glass under ultrahigh pressures to 200 gigapascal confirmed both experimentally and theoretically. Persistent homology analyses with molecular dynamics simulations found increased packing fraction of atoms whose topological diagram at ultrahigh pressures is similar to a pyritetype crystalline phase, although the formation of tetraclusters is prohibited in the crystalline phase. This critical difference would be caused by the potential structural tolerance in the glass for distortion of oxygen clusters. Furthermore, an expanded electronic band gap demonstrates that chemical bonds survive at ultrahigh pressure. This opens up the synthesis of topologically disordered dense oxide glasses. 
Tuning Cavitation and Crazing in Polymer Nanocomposite Glasses Containing Bimodal Grafted Nanoparticles at the Nanoparticle/Polymer Interface (2019)
Rui Shi, HuJun Qian, ZhongYuan LuAbstract
It is widely accepted that adding nanoparticles (NPs) into polymer matrices can dramatically alter the mechanical properties of the material, and that the properties at the NP/polymer interface play a vital role. By performing coarsegrained molecular dynamics simulations, we study the stress–strain behaviour of polymer/NP composites (PNCs) in a glassy state under a triaxial tensile deformation, in which the NPs are well dispersed in the system via bimodal grafting. A ‘HOMO’ system, in which the short grafted chains are chemically identical to the matrix polymer, and a ‘HETERO’ system, in which the short grafted chains interact weakly with the matrix, are investigated. Our simulations demonstrate that the HOMO system behaves very similarly to the pure polymer system, with quick cavitation and a drop in stress after the yielding point, corresponding to a craze deformation process. While in the HETERO system, weak interactions between the short grafts and the matrix polymer induce a low local modulus, therefore, rather homogeneous void formation and consequently a slower cavitation process are observed at the surface of the well dispersed NPs during the tensile deformation. As a result, the depletion effect at the NP surface eventually leads to NP reassembly at large strains. Moreover, the HETERO system undergoes a sheardeformationtended tensile process rather than the craze deformation found in the HOMO system. At the same time, the HETERO system is more ductile, with a much slower drop in stress after yielding than the HOMO system. In addition, the homogeneous generation of voids at small strain in the HETERO system can be utilized in the fabrication of polymer films with desirable separation abilities for gases or small molecules. We hope that these simulation results will be helpful for the property regulation of PNC materials containing polymer grafted NPs. 
NonEmpirical Identification of Trigger Sites in Image Data Using Persistent Homology: Crack Formation During Heterogeneous Reduction of IronOre Sinters (2018)
M. Kimura, I. Obayashi, Y. Takeichi, R. Murao, Y. Hiraoka 
Pore Geometry Characterization by Persistent Homology Theory (2018)
Fei Jiang, Takeshi Tsuji, Tomoyuki ShiraiAbstract
Rock pore geometry has heterogeneous characteristics and is scale dependent. This feature in a geological formation differs significantly from artificial materials and makes it difficult to predict hydrologic and elastic properties. To characterize pore heterogeneity, we propose an evaluation method that exploits the recently developed persistent homology theory. In the proposed method, complex pore geometry is first represented as sphere cloud data using a porenetwork extraction method. Then, a persistence diagram (PD) is calculated from the point cloud, which represents the spatial distribution of pore bodies. A new parameter (distance index H) derived from the PD is proposed to characterize the degree of rock heterogeneity. Low H value indicates high heterogeneity. A new empirical equation using this index H is proposed to predict the effective elastic modulus of porous media. The results indicate that the proposed PD analysis is very efficient for extracting topological feature of pore geometry. 
Topology of Force Networks in Granular Media Under Impact (2017)
M. X. Lim, R. P. BehringerAbstract
We investigate the evolution of the force network in experimental systems of twodimensional granular materials under impact. We use the first Betti number, , and persistence diagrams, as measures of the topological properties of the force network. We show that the structure of the network has a complex, hysteretic dependence on both the intruder acceleration and the total force response of the granular material. can also distinguish between the nonlinear formation and relaxation of the force network. In addition, using the persistence diagram of the force network, we show that the size of the loops in the force network has a Poissonlike distribution, the characteristic size of which changes over the course of the impact. 
Morse Theory and Persistent Homology for Topological Analysis of 3D Images of Complex Materials (2014)
O. DelgadoFriedrichs, V. Robins, A. SheppardAbstract
We develop topologically accurate and compatible definitions for the skeleton and watershed segmentation of a 3D digital object that are computed by a single algorithm. These definitions are based on a discrete gradient vector field derived from a signed distance transform. This gradient vector field is amenable to topological analysis and simplification via Forman's discrete Morse theory and provides a filtration that can be used as input to persistent homology algorithms. Efficient implementations allow us to process largescale xray microCT data of rock cores and other materials.