🍩 Database of Original & Non-Theoretical Uses of Topology
(found 18 matches in 0.004306s)
-
-
TILT: Topological Interface Recovery in Limited-Angle Tomography (2024)
Elli Karvonen, Matti Lassas, Pekka Pankka, Samuli SiltanenAbstract
A wavelet-based sparsity-promoting reconstruction method is studied in the context of tomography with severely limited projection data. Such imaging problems are ill-posed inverse problems, or very sensitive to measurement and modeling errors. The reconstruction method is based on minimizing a sum of a data discrepancy term based on an \$\ell\textasciicircum2\$-norm and another term containing an \$\ell\textasciicircum1\$-norm of a wavelet coefficient vector. Depending on the viewpoint, the method can be considered (i) as finding the Bayesian maximum a posteriori (MAP) estimate using a Besov-space \$B_\11\\textasciicircum\1\(\\mathbb T\\textasciicircum\2\)\$ prior, or (ii) as deterministic regularization with a Besov-norm penalty. The minimization is performed using a tailored primal-dual path following interior-point method, which is applicable to problems larger in scale than commercially available general-purpose optimization package algorithms. The choice of “regularization parameter” is done by a novel technique called the S-curve method, which can be used to incorporate a priori information on the sparsity of the unknown target to the reconstruction process. Numerical results are presented, focusing on uniformly sampled sparse-angle data. Both simulated and measured data are considered, and noise-robust and edge-preserving multiresolution reconstructions are achieved. In sparse-angle cases with simulated data the proposed method offers a significant improvement in reconstruction quality (measured in relative square norm error) over filtered back-projection (FBP) and Tikhonov regularization. -
Dissecting Glial Scar Formation by Spatial Point Pattern and Topological Data Analysis (2024)
Daniel Manrique-Castano, Dhananjay Bhaskar, Ayman ElAliAbstract
Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.Community Resources
-
CCF-GNN: A Unified Model Aggregating Appearance, Microenvironment, and Topology for Pathology Image Classification (2023)
Hongxiao Wang, Gang Huang, Zhuo Zhao, Liang Cheng, Anna Juncker-Jensen, Máté Levente Nagy, Xin Lu, Xiangliang Zhang, Danny Z. ChenAbstract
Pathology images contain rich information of cell appearance, microenvironment, and topology features for cancer analysis and diagnosis. Among such features, topology becomes increasingly important in analysis for cancer immunotherapy. By analyzing geometric and hierarchically structured cell distribution topology, oncologists can identify densely-packed and cancer-relevant cell communities (CCs) for making decisions. Compared to commonly-used pixel-level Convolution Neural Network (CNN) features and cell-instance-level Graph Neural Network (GNN) features, CC topology features are at a higher level of granularity and geometry. However, topological features have not been well exploited by recent deep learning (DL) methods for pathology image classification due to lack of effective topological descriptors for cell distribution and gathering patterns. In this paper, inspired by clinical practice, we analyze and classify pathology images by comprehensively learning cell appearance, microenvironment, and topology in a fine-to-coarse manner. To describe and exploit topology, we design Cell Community Forest (CCF), a novel graph that represents the hierarchical formulation process of big-sparse CCs from small-dense CCs. Using CCF as a new geometric topological descriptor of tumor cells in pathology images, we propose CCF-GNN, a GNN model that successively aggregates heterogeneous features (e.g., appearance, microenvironment) from cell-instance-level, cell-community-level, into image-level for pathology image classification. Extensive cross-validation experiments show that our method significantly outperforms alternative methods on H&E-stained; immunofluorescence images for disease grading tasks with multiple cancer types. Our proposed CCF-GNN establishes a new topological data analysis (TDA) based method, which facilitates integrating multi-level heterogeneous features of point clouds (e.g., for cells) into a unified DL framework. -
Theory and Algorithms for Constructing Discrete Morse Complexes From Grayscale Digital Images (2011)
V. Robins, P. J. Wood, A. P. SheppardAbstract
We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology. -
Persistent Betti Numbers for a Noise Tolerant Shape-Based Approach to Image Retrieval (2011)
Patrizio Frosini, Claudia LandiAbstract
In content-based image retrieval a major problem is the presence of noisy shapes. It is well known that persistent Betti numbers are a shape descriptor that admits a dissimilarity distance, the matching distance, stable under continuous shape deformations. In this paper we focus on the problem of dealing with noise that changes the topology of the studied objects. We present a general method to turn persistent Betti numbers into stable descriptors also in the presence of topological changes. Retrieval tests on the Kimia-99 database show the effectiveness of the method. -
RGB Image-Based Data Analysis via Discrete Morse Theory and Persistent Homology (2018)
Chuan Du, Christopher Szul, Adarsh Manawa, Nima Rasekh, Rosemary Guzman, Ruth DavidsonAbstract
Understanding and comparing images for the purposes of data analysis is currently a very computationally demanding task. A group at Australian National University (ANU) recently developed open-source code that can detect fundamental topological features of a grayscale image in a computationally feasible manner. This is made possible by the fact that computers store grayscale images as cubical cellular complexes. These complexes can be studied using the techniques of discrete Morse theory. We expand the functionality of the ANU code by introducing methods and software for analyzing images encoded in red, green, and blue (RGB), because this image encoding is very popular for publicly available data. Our methods allow the extraction of key topological information from RGB images via informative persistence diagrams by introducing novel methods for transforming RGB-to-grayscale. This paradigm allows us to perform data analysis directly on RGB images representing water scarcity variability as well as crime variability. We introduce software enabling a a user to predict future image properties, towards the eventual aim of more rapid image-based data behavior prediction. -
Topological Data Analysis Distinguishes Parameter Regimes in the Anderson-Chaplain Model of Angiogenesis (2021)
John T. Nardini, Bernadette J. Stolz, Kevin B. Flores, Heather A. Harrington, Helen M. ByrneAbstract
Angiogenesis is the process by which blood vessels form from pre-existing vessels. It plays a key role in many biological processes, including embryonic development and wound healing, and contributes to many diseases including cancer and rheumatoid arthritis. The structure of the resulting vessel networks determines their ability to deliver nutrients and remove waste products from biological tissues. Here we simulate the Anderson-Chaplain model of angiogenesis at different parameter values and quantify the vessel architectures of the resulting synthetic data. Specifically, we propose a topological data analysis (TDA) pipeline for systematic analysis of the model. TDA is a vibrant and relatively new field of computational mathematics for studying the shape of data. We compute topological and standard descriptors of model simulations generated by different parameter values. We show that TDA of model simulation data stratifies parameter space into regions with similar vessel morphology. The methodologies proposed here are widely applicable to other synthetic and experimental data including wound healing, development, and plant biology. -
Localization in the Crowd With Topological Constraints (2020)
Shahira Abousamra, Minh Hoai, Dimitris Samaras, Chao ChenAbstract
We address the problem of crowd localization, i.e., the prediction of dots corresponding to people in a crowded scene. Due to various challenges, a localization method is prone to spatial semantic errors, i.e., predicting multiple dots within a same person or collapsing multiple dots in a cluttered region. We propose a topological approach targeting these semantic errors. We introduce a topological constraint that teaches the model to reason about the spatial arrangement of dots. To enforce this constraint, we define a persistence loss based on the theory of persistent homology. The loss compares the topographic landscape of the likelihood map and the topology of the ground truth. Topological reasoning improves the quality of the localization algorithm especially near cluttered regions. On multiple public benchmarks, our method outperforms previous localization methods. Additionally, we demonstrate the potential of our method in improving the performance in the crowd counting task. -
A Sheaf and Topology Approach to Generating Local Branch Numbers in Digital Images (2020)
Chuan-Shen Hu, Yu-Min ChungAbstract
This paper concerns a theoretical approach that combines topological data analysis (TDA) and sheaf theory. Topological data analysis, a rising field in mathematics and computer science, concerns the shape of the data and has been proven effective in many scientific disciplines. Sheaf theory, a mathematics subject in algebraic geometry, provides a framework for describing the local consistency in geometric objects. Persistent homology (PH) is one of the main driving forces in TDA, and the idea is to track changes of geometric objects at different scales. The persistence diagram (PD) summarizes the information of PH in the form of a multi-set. While PD provides useful information about the underlying objects, it lacks fine relations about the local consistency of specific pairs of generators in PD, such as the merging relation between two connected components in the PH. The sheaf structure provides a novel point of view for describing the merging relation of local objects in PH. It is the goal of this paper to establish a theoretic framework that utilizes the sheaf theory to uncover finer information from the PH. We also show that the proposed theory can be applied to identify the branch numbers of local objects in digital images. -
A Mayer–Vietoris Formula for Persistent Homology With an Application to Shape Recognition in the Presence of Occlusions (2011)
Barbara Di Fabio, Claudia LandiAbstract
In algebraic topology it is well known that, using the Mayer–Vietoris sequence, the homology of a space X can be studied by splitting X into subspaces A and B and computing the homology of A, B, and A∩B. A natural question is: To what extent does persistent homology benefit from a similar property? In this paper we show that persistent homology has a Mayer–Vietoris sequence that is generally not exact but only of order 2. However, we obtain a Mayer–Vietoris formula involving the ranks of the persistent homology groups of X, A, B, and A∩B plus three extra terms. This implies that persistent homological features of A and B can be found either as persistent homological features of X or of A∩B. As an application of this result, we show that persistence diagrams are able to recognize an occluded shape by showing a common subset of points. -
TopoGAN: A Topology-Aware Generative Adversarial Network (2020)
Fan Wang, Huidong Liu, Dimitris Samaras, Chao ChenAbstract
Existing generative adversarial networks (GANs) focus on generating realistic images based on CNN-derived image features, but fail to preserve the structural properties of real images. This can be fatal in applications where the underlying structure (e.g.., neurons, vessels, membranes, and road networks) of the image carries crucial semantic meaning. In this paper, we propose a novel GAN model that learns the topology of real images, i.e., connectedness and loopy-ness. In particular, we introduce a new loss that bridges the gap between synthetic image distribution and real image distribution in the topological feature space. By optimizing this loss, the generator produces images with the same structural topology as real images. We also propose new GAN evaluation metrics that measure the topological realism of the synthetic images. We show in experiments that our method generates synthetic images with realistic topology. We also highlight the increased performance that our method brings to downstream tasks such as segmentation.Community Resources
-
Acute Lymphoblastic Leukemia Classification Using Persistent Homology (2024)
Waqar Hussain Shah, Abdullah Baloch, Rider Jaimes-Reátegui, Sohail Iqbal, Syeda Rafia Fatima, Alexander N. PisarchikAbstract
Acute Lymphoblastic Leukemia (ALL) is a prevalent form of childhood blood cancer characterized by the proliferation of immature white blood cells that rapidly replace normal cells in the bone marrow. The exponential growth of these leukemic cells can be fatal if not treated promptly. Classifying lymphoblasts and healthy cells poses a significant challenge, even for domain experts, due to their morphological similarities. Automated computer analysis of ALL can provide substantial support in this domain and potentially save numerous lives. In this paper, we propose a novel classification approach that involves analyzing shapes and extracting topological features of ALL cells. We employ persistent homology to capture these topological features. Our technique accurately and efficiently detects and classifies leukemia blast cells, achieving a recall of 98.2% and an F1-score of 94.6%. This approach has the potential to significantly enhance leukemia diagnosis and therapy. -
Mapping Geometric and Electromagnetic Feature Spaces With Machine Learning for Additively Manufactured RF Devices (2022)
Deanna Sessions, Venkatesh Meenakshisundaram, Andrew Gillman, Alexander Cook, Kazuko Fuchi, Philip R. Buskohl, Gregory H. HuffAbstract
Multi-material additive manufacturing enables transformative capabilities in customized, low-cost, and multi-functional electromagnetic devices. However, process-specific fabrication anomalies can result in non-intuitive effects on performance; we propose a framework for identifying defect mechanisms and their performance impact by mapping geometric variances to electromagnetic performance metrics. This method can accelerate additive fabrication feedback while avoiding the high computational cost of in-line electromagnetic simulation. We first used dimension reduction to explore the population of geometric manufacturing anomalies and electromagnetic performance. Convolutional neural networks are then trained to predict the electromagnetic performance of the printed geometries. In generating the networks, we explored two inputs: one image-derived geometric description and one using the same description with additional simulated electromagnetic information. Network latent space analysis shows the networks learned both geometric and electromagnetic values even without electromagnetic input. This result demonstrates it is possible to create accelerated additive feedback systems predicting electromagnetic performance without in-line simulation. -
Histopathological Cancer Detection With Topological Signatures (2023)
Ankur Yadav, Faisal Ahmed, Ovidiu Daescu, Reyhan Gedik, Baris CoskunuzerAbstract
We present a transformative approach to histopathological cancer detection and grading by introducing a very powerful feature extraction method based on the latest topological data analysis tools. By analyzing the evolution of topological patterns in different color channels, we discovered that every tumor class leaves its own topological footprint in histopathological images, allowing to extract feature vectors that can be used to reliably identify tumor classes.Our topological signatures, even when combined with traditional machine learning methods, provide very fast and highly accurate results in various settings. While most DL models work well for one type of cancer, our model easily adapts to different scenarios, and consistently gives highly competitive results with the state-of-the-art models on benchmark datasets across multiple cancer types including bone, colon, breast, cervical (cytopathology), and prostate cancer. Unlike most DL models, our proposed Topo-ML model does not need any data augmentation or pre-processing steps and works perfectly on small datasets. The model is computationally very efficient, with end-to-end processing taking only a few hours for datasets consisting of thousands of images. -
Topological Data Analysis and Diagnostics of Compressible Magnetohydrodynamic Turbulence (2018)
Irina Makarenko, Paul Bushby, Andrew Fletcher, Robin Henderson, Nikolay Makarenko, Anvar ShukurovAbstract
The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical magnetohydrodynamics, it is important to verify that such simulations are in agreement with observations. One of the main challenges in this area is to identify robust quantitative measures to compare structures found in simulations with those inferred from astrophysical observations. A similar challenge is to compare quantitatively results from different simulations. Topological data analysis offers a range of techniques, including the Betti numbers and persistence diagrams, that can be used to facilitate such a comparison. After describing these tools, we first apply them to synthetic random fields and demonstrate that, when the data are standardized in a straightforward manner, some topological measures are insensitive to either large-scale trends or the resolution of the data. Focusing upon one particular astrophysical example, we apply topological data analysis to H i observations of the turbulent interstellar medium (ISM) in the Milky Way and to recent magnetohydrodynamic simulations of the random, strongly compressible ISM. We stress that these topological techniques are generic and could be applied to any complex, multi-dimensional random field. -
A Morphometric Analysis of Vegetation Patterns in Dryland Ecosystems (2017)
Luke Mander, Stefan C. Dekker, Mao Li, Washington Mio, Surangi W. Punyasena, Timothy M. LentonAbstract
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. -
Manifold Learning for Coherent Design Interpolation Based on Geometrical and Topological Descriptors (2023)
D. Muñoz, O. Allix, F. Chinesta, J. J. Ródenas, E. NadalAbstract
In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules or steps as it remains in the intuition and expertise of engineers, designers, and other professionals. Today, a new research line in this concern spot-up thanks to the explosion of Artificial Intelligence and Machine Learning algorithms and its alliance with Computational Mechanics and Optimisation tools. However, a key aspect with industrial design is the scarcity of available data, making it problematic to rely on deep-learning approaches. Assuming that the existing designs live in a manifold, in this paper, we propose a synergistic use of existing Machine Learning tools to infer a reduced manifold from the existing limited set of designs and, then, to use it to interpolate between the individuals, working as a generator basis, to create new and coherent designs. For this, a key aspect is to be able to properly interpolate in the reduced manifold, which requires a proper clustering of the individuals. From our experience, due to the scarcity of data, adding topological descriptors to geometrical ones considerably improves the quality of the clustering. Thus, a distance, mixing topology and geometry is proposed. This distance is used both, for the clustering and for the interpolation. For the interpolation, relying on optimal transport appear to be mandatory. Examples of growing complexity are proposed to illustrate the goodness of the method.