🍩 Database of Original & Non-Theoretical Uses of Topology

(found 2 matches in 0.001182s)
  1. Go With the Flow? A Large-Scale Analysis of Health Care Delivery Networks in the United States Using Hodge Theory (2021)

    Thomas Gebhart, Xiaojun Fu, Russell J. Funk
    Abstract Health care delivery is a collaborative process, requiring close coordination among networks of providers with specialized expertise. Yet in the United States, care is often spread across multiple disconnected providers (e.g., primary care physicians, specialists), leading to fragmented care delivery networks, and contributing to higher costs and lower quality. While this problem is well known, there are relatively few quantitative tools available for characterizing the dynamics of care delivery networks at scale, thereby inhibiting deeper understanding of care fragmentation and efforts to address it. In this, study, we conduct a large-scale analysis of care delivery networks across the United States using the discrete Hodge decomposition, an emerging method of topological data analysis. Using this technique, we decompose networks of patient flows among physicians into three orthogonal subspaces: gradient (acyclic flow), harmonic (global cyclic flow), and curl (local cyclic flow). We document substantial variation in the relative importance of each subspace, suggesting that there may be systematic differences in the organization of care delivery networks across health care markets. Moreover, we find that the relative importance of each subspace is predictive of local care cost and quality, with outcomes tending to be better with greater curl flow and worse with greater harmonic flow.
  2. The Geometry of Synchronization Problems and Learning Group Actions (2019)

    Tingran Gao, Jacek Brodzki, Sayan Mukherjee
    Abstract We develop a geometric framework, based on the classical theory of fibre bundles, to characterize the cohomological nature of a large class of synchronization-type problems in the context of graph inference and combinatorial optimization. We identify each synchronization problem in topological group G on connected graph ΓΓ\Gamma with a flat principal G-bundle over ΓΓ\Gamma , thus establishing a classification result for synchronization problems using the representation variety of the fundamental group of ΓΓ\Gamma into G. We then develop a twisted Hodge theory on flat vector bundles associated with these flat principal G-bundles, and provide a geometric realization of the graph connection Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham–Hodge cochain complex. Motivated by these geometric intuitions, we propose to study the problem of learning group actions—partitioning a collection of objects based on the local synchronizability of pairwise correspondence relations—and provide a heuristic synchronization-based algorithm for solving this type of problems. We demonstrate the efficacy of this algorithm on simulated and real datasets.