🍩 Database of Original & Non-Theoretical Uses of Topology

(found 4 matches in 0.000913s)
  1. Understanding Diffraction Patterns of Glassy, Liquid and Amorphous Materials via Persistent Homology Analyses (2019)

    Yohei Onodera, Shinji Kohara, Shuta Tahara, Atsunobu Masuno, Hiroyuki Inoue, Motoki Shiga, Akihiko Hirata, Koichi Tsuchiya, Yasuaki Hiraoka, Ippei Obayashi, Koji Ohara, Akitoshi Mizuno, Osami Sakata
    Abstract The structure of glassy, liquid, and amorphous materials is still not well understood, due to the insufficient structural information from diffraction data. In this article, attempts are made to understand the origin of diffraction peaks, particularly of the first sharp diffraction peak (FSDP, Q1), the principal peak (PP, Q2), and the third peak (Q3), observed in the measured diffraction patterns of disordered materials whose structure contains tetrahedral motifs. It is confirmed that the FSDP (Q1) is not a signature of the formation of a network, because an FSDP is observed in tetrahedral molecular liquids. It is found that the PP (Q2) reflects orientational correlations of tetrahedra. Q3, that can be observed in all disordered materials, even in common liquid metals, stems from simple pair correlations. Moreover, information on the topology of disordered materials was revealed by utilizing persistent homology analyses. The persistence diagram of silica (SiO2) glass suggests that the shape of rings in the glass is similar not only to those in the crystalline phase with comparable density (α-cristobalite), but also to rings present in crystalline phases with higher density (α-quartz and coesite); this is thought to be the signature of disorder. Furthermore, we have succeeded in revealing the differences, in terms of persistent homology, between tetrahedral networks and tetrahedral molecular liquids, and the difference/similarity between liquid and amorphous (glassy) states. Our series of analyses demonstrated that a combination of diffraction data and persistent homology analyses is a useful tool for allowing us to uncover structural features hidden in halo pattern of disordered materials.
  2. Microscopic Description of Yielding in Glass Based on Persistent Homology (2019)

    Tatsuhiko Shirai, Takenobu Nakamura
    Abstract Persistent homology (PH) was applied to probe the structural changes of glasses under shear. PH associates each local atomistic structure in an atomistic configuration to a geometric object, namely, a hole, and evaluates the robustness of these holes against noise. We found that the microscopic structures were qualitatively different before and after yielding. The structures before yielding contained robust holes, the number of which decreased after yielding. We also observed that the structures after yielding approached those of quickly quenched glass. This work demonstrates the crucial role of robust holes in yielding and provides an interpretation based on geometry.
  3. Statistical Topology of Bond Networks With Applications to Silica (2020)

    B. Schweinhart, D. Rodney, J. K. Mason
    Abstract Whereas knowledge of a crystalline material's unit cell is fundamental to understanding the material's properties and behavior, there are no obvious analogs to unit cells for disordered materials despite the frequent existence of considerable medium-range order. This article views a material's structure as a collection of local atomic environments that are sampled from some underlying probability distribution of such environments, with the advantage of offering a unified description of both ordered and disordered materials. Crystalline materials can then be regarded as special cases where the underlying probability distribution is highly concentrated around the traditional unit cell. The 𝐻1 barcode is proposed as a descriptor of local atomic environments suitable for disordered bond networks and is applied with three other descriptors to molecular dynamics simulations of silica glasses. Each descriptor reliably distinguishes the structure of glasses produced at different cooling rates, with the 𝐻1 barcode and coordination profile providing the best separation. The approach is generally applicable to any system that can be represented as a sparse graph.

    Community Resources