🍩 Database of Original & Non-Theoretical Uses of Topology

(found 3 matches in 0.001602s)
  1. Hierarchical Clustering and Zeroth Persistent Homology (2020)

    İsmail Güzel, Atabey Kaygun
    Abstract In this article, we show that hierarchical clustering and the zeroth persistent homology do deliver the same topological information about a given data set. We show this fact using cophenetic matrices constructed out of the filtered Vietoris-Rips complex of the data set at hand. As in any cophenetic matrix, one can also display the inter-relations of zeroth homology classes via a rooted tree, also known as a dendogram. Since homological cophenetic matrices can be calculated for higher homologies, one can also sketch similar dendograms for higher persistent homology classes.
  2. Mind the Gap: A Study in Global Development Through Persistent Homology (2018)

    Andrew Banman, Lori Ziegelmeier
    Abstract The Gapminder project set out to use statistics to dispel simplistic notions about global development. In the same spirit, we use persistent homology, a technique from computational algebraic topology, to explore the relationship between country development and geography. For each country, four indicators, gross domestic product per capita; average life expectancy; infant mortality; and gross national income per capita, were used to quantify the development. Two analyses were performed. The first considers clusters of the countries based on these indicators, and the second uncovers cycles in the data when combined with geographic border structure. Our analysis is a multi-scale approach that reveals similarities and connections among countries at a variety of levels. We discover localized development patterns that are invisible in standard statistical methods.
  3. Unveiling Patterns of International Communities in a Global City Using Mobile Phone Data (2015)

    Paolo Bajardi, Matteo Delfino, André Panisson, Giovanni Petri, Michele Tizzoni
    Abstract We analyse a large mobile phone activity dataset provided by Telecom Italia for the Telecom Big Data Challenge contest. The dataset reports the international country codes of every call/SMS made and received by mobile phone users in Milan, Italy, between November and December 2013, with a spatial resolution of about 200 meters. We first show that the observed spatial distribution of international codes well matches the distribution of international communities reported by official statistics, confirming the value of mobile phone data for demographic research. Next, we define an entropy function to measure the heterogeneity of the international phone activity in space and time. By comparing the entropy function to empirical data, we show that it can be used to identify the city’s hotspots, defined by the presence of points of interests. Eventually, we use the entropy function to characterize the spatial distribution of international communities in the city. Adopting a topological data analysis approach, we find that international mobile phone users exhibit some robust clustering patterns that correlate with basic socio-economic variables. Our results suggest that mobile phone records can be used in conjunction with topological data analysis tools to study the geography of migrant communities in a global city.